This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation form of the Apply function. (Contributed by Scott Fenton, 12-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brapply.1 | |- A e. _V |
|
| brapply.2 | |- B e. _V |
||
| brapply.3 | |- C e. _V |
||
| Assertion | brapply | |- ( <. A , B >. Apply C <-> C = ( A ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brapply.1 | |- A e. _V |
|
| 2 | brapply.2 | |- B e. _V |
|
| 3 | brapply.3 | |- C e. _V |
|
| 4 | snex | |- { ( A " { B } ) } e. _V |
|
| 5 | 4 | inex1 | |- ( { ( A " { B } ) } i^i Singletons ) e. _V |
| 6 | unieq | |- ( x = ( { ( A " { B } ) } i^i Singletons ) -> U. x = U. ( { ( A " { B } ) } i^i Singletons ) ) |
|
| 7 | 6 | unieqd | |- ( x = ( { ( A " { B } ) } i^i Singletons ) -> U. U. x = U. U. ( { ( A " { B } ) } i^i Singletons ) ) |
| 8 | 7 | eqeq2d | |- ( x = ( { ( A " { B } ) } i^i Singletons ) -> ( C = U. U. x <-> C = U. U. ( { ( A " { B } ) } i^i Singletons ) ) ) |
| 9 | 5 8 | ceqsexv | |- ( E. x ( x = ( { ( A " { B } ) } i^i Singletons ) /\ C = U. U. x ) <-> C = U. U. ( { ( A " { B } ) } i^i Singletons ) ) |
| 10 | df-apply | |- Apply = ( ( Bigcup o. Bigcup ) o. ( ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) ) o. ( ( Singleton o. Img ) o. pprod ( _I , Singleton ) ) ) ) |
|
| 11 | 10 | breqi | |- ( <. A , B >. Apply C <-> <. A , B >. ( ( Bigcup o. Bigcup ) o. ( ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) ) o. ( ( Singleton o. Img ) o. pprod ( _I , Singleton ) ) ) ) C ) |
| 12 | opex | |- <. A , B >. e. _V |
|
| 13 | 12 3 | brco | |- ( <. A , B >. ( ( Bigcup o. Bigcup ) o. ( ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) ) o. ( ( Singleton o. Img ) o. pprod ( _I , Singleton ) ) ) ) C <-> E. x ( <. A , B >. ( ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) ) o. ( ( Singleton o. Img ) o. pprod ( _I , Singleton ) ) ) x /\ x ( Bigcup o. Bigcup ) C ) ) |
| 14 | vex | |- x e. _V |
|
| 15 | 12 14 | brco | |- ( <. A , B >. ( ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) ) o. ( ( Singleton o. Img ) o. pprod ( _I , Singleton ) ) ) x <-> E. y ( <. A , B >. ( ( Singleton o. Img ) o. pprod ( _I , Singleton ) ) y /\ y ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) ) x ) ) |
| 16 | vex | |- y e. _V |
|
| 17 | 12 16 | brco | |- ( <. A , B >. ( ( Singleton o. Img ) o. pprod ( _I , Singleton ) ) y <-> E. z ( <. A , B >. pprod ( _I , Singleton ) z /\ z ( Singleton o. Img ) y ) ) |
| 18 | vex | |- z e. _V |
|
| 19 | 1 2 18 | brpprod3a | |- ( <. A , B >. pprod ( _I , Singleton ) z <-> E. a E. b ( z = <. a , b >. /\ A _I a /\ B Singleton b ) ) |
| 20 | 3anrot | |- ( ( z = <. a , b >. /\ A _I a /\ B Singleton b ) <-> ( A _I a /\ B Singleton b /\ z = <. a , b >. ) ) |
|
| 21 | vex | |- a e. _V |
|
| 22 | 21 | ideq | |- ( A _I a <-> A = a ) |
| 23 | eqcom | |- ( A = a <-> a = A ) |
|
| 24 | 22 23 | bitri | |- ( A _I a <-> a = A ) |
| 25 | vex | |- b e. _V |
|
| 26 | 2 25 | brsingle | |- ( B Singleton b <-> b = { B } ) |
| 27 | biid | |- ( z = <. a , b >. <-> z = <. a , b >. ) |
|
| 28 | 24 26 27 | 3anbi123i | |- ( ( A _I a /\ B Singleton b /\ z = <. a , b >. ) <-> ( a = A /\ b = { B } /\ z = <. a , b >. ) ) |
| 29 | 20 28 | bitri | |- ( ( z = <. a , b >. /\ A _I a /\ B Singleton b ) <-> ( a = A /\ b = { B } /\ z = <. a , b >. ) ) |
| 30 | 29 | 2exbii | |- ( E. a E. b ( z = <. a , b >. /\ A _I a /\ B Singleton b ) <-> E. a E. b ( a = A /\ b = { B } /\ z = <. a , b >. ) ) |
| 31 | snex | |- { B } e. _V |
|
| 32 | opeq1 | |- ( a = A -> <. a , b >. = <. A , b >. ) |
|
| 33 | 32 | eqeq2d | |- ( a = A -> ( z = <. a , b >. <-> z = <. A , b >. ) ) |
| 34 | opeq2 | |- ( b = { B } -> <. A , b >. = <. A , { B } >. ) |
|
| 35 | 34 | eqeq2d | |- ( b = { B } -> ( z = <. A , b >. <-> z = <. A , { B } >. ) ) |
| 36 | 1 31 33 35 | ceqsex2v | |- ( E. a E. b ( a = A /\ b = { B } /\ z = <. a , b >. ) <-> z = <. A , { B } >. ) |
| 37 | 19 30 36 | 3bitri | |- ( <. A , B >. pprod ( _I , Singleton ) z <-> z = <. A , { B } >. ) |
| 38 | 37 | anbi1i | |- ( ( <. A , B >. pprod ( _I , Singleton ) z /\ z ( Singleton o. Img ) y ) <-> ( z = <. A , { B } >. /\ z ( Singleton o. Img ) y ) ) |
| 39 | 38 | exbii | |- ( E. z ( <. A , B >. pprod ( _I , Singleton ) z /\ z ( Singleton o. Img ) y ) <-> E. z ( z = <. A , { B } >. /\ z ( Singleton o. Img ) y ) ) |
| 40 | opex | |- <. A , { B } >. e. _V |
|
| 41 | breq1 | |- ( z = <. A , { B } >. -> ( z ( Singleton o. Img ) y <-> <. A , { B } >. ( Singleton o. Img ) y ) ) |
|
| 42 | 40 41 | ceqsexv | |- ( E. z ( z = <. A , { B } >. /\ z ( Singleton o. Img ) y ) <-> <. A , { B } >. ( Singleton o. Img ) y ) |
| 43 | 40 16 | brco | |- ( <. A , { B } >. ( Singleton o. Img ) y <-> E. x ( <. A , { B } >. Img x /\ x Singleton y ) ) |
| 44 | 1 31 14 | brimg | |- ( <. A , { B } >. Img x <-> x = ( A " { B } ) ) |
| 45 | 14 16 | brsingle | |- ( x Singleton y <-> y = { x } ) |
| 46 | 44 45 | anbi12i | |- ( ( <. A , { B } >. Img x /\ x Singleton y ) <-> ( x = ( A " { B } ) /\ y = { x } ) ) |
| 47 | 46 | exbii | |- ( E. x ( <. A , { B } >. Img x /\ x Singleton y ) <-> E. x ( x = ( A " { B } ) /\ y = { x } ) ) |
| 48 | 1 | imaex | |- ( A " { B } ) e. _V |
| 49 | sneq | |- ( x = ( A " { B } ) -> { x } = { ( A " { B } ) } ) |
|
| 50 | 49 | eqeq2d | |- ( x = ( A " { B } ) -> ( y = { x } <-> y = { ( A " { B } ) } ) ) |
| 51 | 48 50 | ceqsexv | |- ( E. x ( x = ( A " { B } ) /\ y = { x } ) <-> y = { ( A " { B } ) } ) |
| 52 | 47 51 | bitri | |- ( E. x ( <. A , { B } >. Img x /\ x Singleton y ) <-> y = { ( A " { B } ) } ) |
| 53 | 42 43 52 | 3bitri | |- ( E. z ( z = <. A , { B } >. /\ z ( Singleton o. Img ) y ) <-> y = { ( A " { B } ) } ) |
| 54 | 17 39 53 | 3bitri | |- ( <. A , B >. ( ( Singleton o. Img ) o. pprod ( _I , Singleton ) ) y <-> y = { ( A " { B } ) } ) |
| 55 | eqid | |- ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) ) = ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) ) |
|
| 56 | brxp | |- ( y ( _V X. _V ) x <-> ( y e. _V /\ x e. _V ) ) |
|
| 57 | 16 14 56 | mpbir2an | |- y ( _V X. _V ) x |
| 58 | epel | |- ( z _E y <-> z e. y ) |
|
| 59 | 58 | anbi1ci | |- ( ( z e. Singletons /\ z _E y ) <-> ( z e. y /\ z e. Singletons ) ) |
| 60 | 16 | brresi | |- ( z ( _E |` Singletons ) y <-> ( z e. Singletons /\ z _E y ) ) |
| 61 | elin | |- ( z e. ( y i^i Singletons ) <-> ( z e. y /\ z e. Singletons ) ) |
|
| 62 | 59 60 61 | 3bitr4ri | |- ( z e. ( y i^i Singletons ) <-> z ( _E |` Singletons ) y ) |
| 63 | 16 14 55 57 62 | brtxpsd3 | |- ( y ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) ) x <-> x = ( y i^i Singletons ) ) |
| 64 | 54 63 | anbi12i | |- ( ( <. A , B >. ( ( Singleton o. Img ) o. pprod ( _I , Singleton ) ) y /\ y ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) ) x ) <-> ( y = { ( A " { B } ) } /\ x = ( y i^i Singletons ) ) ) |
| 65 | 64 | exbii | |- ( E. y ( <. A , B >. ( ( Singleton o. Img ) o. pprod ( _I , Singleton ) ) y /\ y ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) ) x ) <-> E. y ( y = { ( A " { B } ) } /\ x = ( y i^i Singletons ) ) ) |
| 66 | ineq1 | |- ( y = { ( A " { B } ) } -> ( y i^i Singletons ) = ( { ( A " { B } ) } i^i Singletons ) ) |
|
| 67 | 66 | eqeq2d | |- ( y = { ( A " { B } ) } -> ( x = ( y i^i Singletons ) <-> x = ( { ( A " { B } ) } i^i Singletons ) ) ) |
| 68 | 4 67 | ceqsexv | |- ( E. y ( y = { ( A " { B } ) } /\ x = ( y i^i Singletons ) ) <-> x = ( { ( A " { B } ) } i^i Singletons ) ) |
| 69 | 15 65 68 | 3bitri | |- ( <. A , B >. ( ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) ) o. ( ( Singleton o. Img ) o. pprod ( _I , Singleton ) ) ) x <-> x = ( { ( A " { B } ) } i^i Singletons ) ) |
| 70 | 14 3 | brco | |- ( x ( Bigcup o. Bigcup ) C <-> E. y ( x Bigcup y /\ y Bigcup C ) ) |
| 71 | 16 | brbigcup | |- ( x Bigcup y <-> U. x = y ) |
| 72 | eqcom | |- ( U. x = y <-> y = U. x ) |
|
| 73 | 71 72 | bitri | |- ( x Bigcup y <-> y = U. x ) |
| 74 | 3 | brbigcup | |- ( y Bigcup C <-> U. y = C ) |
| 75 | eqcom | |- ( U. y = C <-> C = U. y ) |
|
| 76 | 74 75 | bitri | |- ( y Bigcup C <-> C = U. y ) |
| 77 | 73 76 | anbi12i | |- ( ( x Bigcup y /\ y Bigcup C ) <-> ( y = U. x /\ C = U. y ) ) |
| 78 | 77 | exbii | |- ( E. y ( x Bigcup y /\ y Bigcup C ) <-> E. y ( y = U. x /\ C = U. y ) ) |
| 79 | vuniex | |- U. x e. _V |
|
| 80 | unieq | |- ( y = U. x -> U. y = U. U. x ) |
|
| 81 | 80 | eqeq2d | |- ( y = U. x -> ( C = U. y <-> C = U. U. x ) ) |
| 82 | 79 81 | ceqsexv | |- ( E. y ( y = U. x /\ C = U. y ) <-> C = U. U. x ) |
| 83 | 70 78 82 | 3bitri | |- ( x ( Bigcup o. Bigcup ) C <-> C = U. U. x ) |
| 84 | 69 83 | anbi12i | |- ( ( <. A , B >. ( ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) ) o. ( ( Singleton o. Img ) o. pprod ( _I , Singleton ) ) ) x /\ x ( Bigcup o. Bigcup ) C ) <-> ( x = ( { ( A " { B } ) } i^i Singletons ) /\ C = U. U. x ) ) |
| 85 | 84 | exbii | |- ( E. x ( <. A , B >. ( ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) ) o. ( ( Singleton o. Img ) o. pprod ( _I , Singleton ) ) ) x /\ x ( Bigcup o. Bigcup ) C ) <-> E. x ( x = ( { ( A " { B } ) } i^i Singletons ) /\ C = U. U. x ) ) |
| 86 | 11 13 85 | 3bitri | |- ( <. A , B >. Apply C <-> E. x ( x = ( { ( A " { B } ) } i^i Singletons ) /\ C = U. U. x ) ) |
| 87 | dffv5 | |- ( A ` B ) = U. U. ( { ( A " { B } ) } i^i Singletons ) |
|
| 88 | 87 | eqeq2i | |- ( C = ( A ` B ) <-> C = U. U. ( { ( A " { B } ) } i^i Singletons ) ) |
| 89 | 9 86 88 | 3bitr4i | |- ( <. A , B >. Apply C <-> C = ( A ` B ) ) |