This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the application function. See brapply for its value. (Contributed by Scott Fenton, 12-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-apply | |- Apply = ( ( Bigcup o. Bigcup ) o. ( ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) ) o. ( ( Singleton o. Img ) o. pprod ( _I , Singleton ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | capply | |- Apply |
|
| 1 | cbigcup | |- Bigcup |
|
| 2 | 1 1 | ccom | |- ( Bigcup o. Bigcup ) |
| 3 | cvv | |- _V |
|
| 4 | 3 3 | cxp | |- ( _V X. _V ) |
| 5 | cep | |- _E |
|
| 6 | 3 5 | ctxp | |- ( _V (x) _E ) |
| 7 | csingles | |- Singletons |
|
| 8 | 5 7 | cres | |- ( _E |` Singletons ) |
| 9 | 8 3 | ctxp | |- ( ( _E |` Singletons ) (x) _V ) |
| 10 | 6 9 | csymdif | |- ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) |
| 11 | 10 | crn | |- ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) |
| 12 | 4 11 | cdif | |- ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) ) |
| 13 | csingle | |- Singleton |
|
| 14 | cimg | |- Img |
|
| 15 | 13 14 | ccom | |- ( Singleton o. Img ) |
| 16 | cid | |- _I |
|
| 17 | 16 13 | cpprod | |- pprod ( _I , Singleton ) |
| 18 | 15 17 | ccom | |- ( ( Singleton o. Img ) o. pprod ( _I , Singleton ) ) |
| 19 | 12 18 | ccom | |- ( ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) ) o. ( ( Singleton o. Img ) o. pprod ( _I , Singleton ) ) ) |
| 20 | 2 19 | ccom | |- ( ( Bigcup o. Bigcup ) o. ( ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) ) o. ( ( Singleton o. Img ) o. pprod ( _I , Singleton ) ) ) ) |
| 21 | 0 20 | wceq | |- Apply = ( ( Bigcup o. Bigcup ) o. ( ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E |` Singletons ) (x) _V ) ) ) o. ( ( Singleton o. Img ) o. pprod ( _I , Singleton ) ) ) ) |