This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Another quantifier-free definition of function value. (Contributed by Scott Fenton, 19-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffv5 | |- ( F ` A ) = U. U. ( { ( F " { A } ) } i^i Singletons ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffv3 | |- ( F ` A ) = ( iota x x e. ( F " { A } ) ) |
|
| 2 | dfiota3 | |- ( iota x x e. ( F " { A } ) ) = U. U. ( { { x | x e. ( F " { A } ) } } i^i Singletons ) |
|
| 3 | abid2 | |- { x | x e. ( F " { A } ) } = ( F " { A } ) |
|
| 4 | 3 | sneqi | |- { { x | x e. ( F " { A } ) } } = { ( F " { A } ) } |
| 5 | 4 | ineq1i | |- ( { { x | x e. ( F " { A } ) } } i^i Singletons ) = ( { ( F " { A } ) } i^i Singletons ) |
| 6 | 5 | unieqi | |- U. ( { { x | x e. ( F " { A } ) } } i^i Singletons ) = U. ( { ( F " { A } ) } i^i Singletons ) |
| 7 | 6 | unieqi | |- U. U. ( { { x | x e. ( F " { A } ) } } i^i Singletons ) = U. U. ( { ( F " { A } ) } i^i Singletons ) |
| 8 | 1 2 7 | 3eqtri | |- ( F ` A ) = U. U. ( { ( F " { A } ) } i^i Singletons ) |