This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006) Avoid ax-10 and ax-11 . (Revised by GG, 20-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ceqsex2v.1 | |- A e. _V |
|
| ceqsex2v.2 | |- B e. _V |
||
| ceqsex2v.3 | |- ( x = A -> ( ph <-> ps ) ) |
||
| ceqsex2v.4 | |- ( y = B -> ( ps <-> ch ) ) |
||
| Assertion | ceqsex2v | |- ( E. x E. y ( x = A /\ y = B /\ ph ) <-> ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsex2v.1 | |- A e. _V |
|
| 2 | ceqsex2v.2 | |- B e. _V |
|
| 3 | ceqsex2v.3 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 4 | ceqsex2v.4 | |- ( y = B -> ( ps <-> ch ) ) |
|
| 5 | 3anass | |- ( ( x = A /\ y = B /\ ph ) <-> ( x = A /\ ( y = B /\ ph ) ) ) |
|
| 6 | 5 | exbii | |- ( E. y ( x = A /\ y = B /\ ph ) <-> E. y ( x = A /\ ( y = B /\ ph ) ) ) |
| 7 | 19.42v | |- ( E. y ( x = A /\ ( y = B /\ ph ) ) <-> ( x = A /\ E. y ( y = B /\ ph ) ) ) |
|
| 8 | 6 7 | bitri | |- ( E. y ( x = A /\ y = B /\ ph ) <-> ( x = A /\ E. y ( y = B /\ ph ) ) ) |
| 9 | 8 | exbii | |- ( E. x E. y ( x = A /\ y = B /\ ph ) <-> E. x ( x = A /\ E. y ( y = B /\ ph ) ) ) |
| 10 | 3 | anbi2d | |- ( x = A -> ( ( y = B /\ ph ) <-> ( y = B /\ ps ) ) ) |
| 11 | 10 | exbidv | |- ( x = A -> ( E. y ( y = B /\ ph ) <-> E. y ( y = B /\ ps ) ) ) |
| 12 | 1 11 | ceqsexv | |- ( E. x ( x = A /\ E. y ( y = B /\ ph ) ) <-> E. y ( y = B /\ ps ) ) |
| 13 | 2 4 | ceqsexv | |- ( E. y ( y = B /\ ps ) <-> ch ) |
| 14 | 9 12 13 | 3bitri | |- ( E. x E. y ( x = A /\ y = B /\ ph ) <-> ch ) |