This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for parallel product when the last argument is not an ordered pair. (Contributed by Scott Fenton, 11-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brpprod3.1 | |- X e. _V |
|
| brpprod3.2 | |- Y e. _V |
||
| brpprod3.3 | |- Z e. _V |
||
| Assertion | brpprod3a | |- ( <. X , Y >. pprod ( R , S ) Z <-> E. z E. w ( Z = <. z , w >. /\ X R z /\ Y S w ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brpprod3.1 | |- X e. _V |
|
| 2 | brpprod3.2 | |- Y e. _V |
|
| 3 | brpprod3.3 | |- Z e. _V |
|
| 4 | pprodss4v | |- pprod ( R , S ) C_ ( ( _V X. _V ) X. ( _V X. _V ) ) |
|
| 5 | 4 | brel | |- ( <. X , Y >. pprod ( R , S ) Z -> ( <. X , Y >. e. ( _V X. _V ) /\ Z e. ( _V X. _V ) ) ) |
| 6 | 5 | simprd | |- ( <. X , Y >. pprod ( R , S ) Z -> Z e. ( _V X. _V ) ) |
| 7 | elvv | |- ( Z e. ( _V X. _V ) <-> E. z E. w Z = <. z , w >. ) |
|
| 8 | 6 7 | sylib | |- ( <. X , Y >. pprod ( R , S ) Z -> E. z E. w Z = <. z , w >. ) |
| 9 | 8 | pm4.71ri | |- ( <. X , Y >. pprod ( R , S ) Z <-> ( E. z E. w Z = <. z , w >. /\ <. X , Y >. pprod ( R , S ) Z ) ) |
| 10 | 19.41vv | |- ( E. z E. w ( Z = <. z , w >. /\ <. X , Y >. pprod ( R , S ) Z ) <-> ( E. z E. w Z = <. z , w >. /\ <. X , Y >. pprod ( R , S ) Z ) ) |
|
| 11 | 9 10 | bitr4i | |- ( <. X , Y >. pprod ( R , S ) Z <-> E. z E. w ( Z = <. z , w >. /\ <. X , Y >. pprod ( R , S ) Z ) ) |
| 12 | breq2 | |- ( Z = <. z , w >. -> ( <. X , Y >. pprod ( R , S ) Z <-> <. X , Y >. pprod ( R , S ) <. z , w >. ) ) |
|
| 13 | 12 | pm5.32i | |- ( ( Z = <. z , w >. /\ <. X , Y >. pprod ( R , S ) Z ) <-> ( Z = <. z , w >. /\ <. X , Y >. pprod ( R , S ) <. z , w >. ) ) |
| 14 | 13 | 2exbii | |- ( E. z E. w ( Z = <. z , w >. /\ <. X , Y >. pprod ( R , S ) Z ) <-> E. z E. w ( Z = <. z , w >. /\ <. X , Y >. pprod ( R , S ) <. z , w >. ) ) |
| 15 | vex | |- z e. _V |
|
| 16 | vex | |- w e. _V |
|
| 17 | 1 2 15 16 | brpprod | |- ( <. X , Y >. pprod ( R , S ) <. z , w >. <-> ( X R z /\ Y S w ) ) |
| 18 | 17 | anbi2i | |- ( ( Z = <. z , w >. /\ <. X , Y >. pprod ( R , S ) <. z , w >. ) <-> ( Z = <. z , w >. /\ ( X R z /\ Y S w ) ) ) |
| 19 | 3anass | |- ( ( Z = <. z , w >. /\ X R z /\ Y S w ) <-> ( Z = <. z , w >. /\ ( X R z /\ Y S w ) ) ) |
|
| 20 | 18 19 | bitr4i | |- ( ( Z = <. z , w >. /\ <. X , Y >. pprod ( R , S ) <. z , w >. ) <-> ( Z = <. z , w >. /\ X R z /\ Y S w ) ) |
| 21 | 20 | 2exbii | |- ( E. z E. w ( Z = <. z , w >. /\ <. X , Y >. pprod ( R , S ) <. z , w >. ) <-> E. z E. w ( Z = <. z , w >. /\ X R z /\ Y S w ) ) |
| 22 | 11 14 21 | 3bitri | |- ( <. X , Y >. pprod ( R , S ) Z <-> E. z E. w ( Z = <. z , w >. /\ X R z /\ Y S w ) ) |