This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation form of the Img function. (Contributed by Scott Fenton, 12-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brimg.1 | |- A e. _V |
|
| brimg.2 | |- B e. _V |
||
| brimg.3 | |- C e. _V |
||
| Assertion | brimg | |- ( <. A , B >. Img C <-> C = ( A " B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brimg.1 | |- A e. _V |
|
| 2 | brimg.2 | |- B e. _V |
|
| 3 | brimg.3 | |- C e. _V |
|
| 4 | df-img | |- Img = ( Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) o. Cart ) |
|
| 5 | 4 | breqi | |- ( <. A , B >. Img C <-> <. A , B >. ( Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) o. Cart ) C ) |
| 6 | opex | |- <. A , B >. e. _V |
|
| 7 | 6 3 | brco | |- ( <. A , B >. ( Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) o. Cart ) C <-> E. a ( <. A , B >. Cart a /\ a Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) C ) ) |
| 8 | vex | |- a e. _V |
|
| 9 | 1 2 8 | brcart | |- ( <. A , B >. Cart a <-> a = ( A X. B ) ) |
| 10 | 9 | anbi1i | |- ( ( <. A , B >. Cart a /\ a Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) C ) <-> ( a = ( A X. B ) /\ a Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) C ) ) |
| 11 | 10 | exbii | |- ( E. a ( <. A , B >. Cart a /\ a Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) C ) <-> E. a ( a = ( A X. B ) /\ a Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) C ) ) |
| 12 | 1 2 | xpex | |- ( A X. B ) e. _V |
| 13 | breq1 | |- ( a = ( A X. B ) -> ( a Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) C <-> ( A X. B ) Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) C ) ) |
|
| 14 | 12 13 | ceqsexv | |- ( E. a ( a = ( A X. B ) /\ a Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) C ) <-> ( A X. B ) Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) C ) |
| 15 | 7 11 14 | 3bitri | |- ( <. A , B >. ( Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) o. Cart ) C <-> ( A X. B ) Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) C ) |
| 16 | 12 3 | brimage | |- ( ( A X. B ) Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) C <-> C = ( ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) " ( A X. B ) ) ) |
| 17 | 19.42v | |- ( E. a ( b e. B /\ ( a e. A /\ <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) <-> ( b e. B /\ E. a ( a e. A /\ <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) |
|
| 18 | anass | |- ( ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) <-> ( p = <. a , b >. /\ ( ( a e. A /\ b e. B ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) |
|
| 19 | an21 | |- ( ( ( a e. A /\ b e. B ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) <-> ( b e. B /\ ( a e. A /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) |
|
| 20 | 19 | anbi2i | |- ( ( p = <. a , b >. /\ ( ( a e. A /\ b e. B ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) <-> ( p = <. a , b >. /\ ( b e. B /\ ( a e. A /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) ) |
| 21 | 18 20 | bitri | |- ( ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) <-> ( p = <. a , b >. /\ ( b e. B /\ ( a e. A /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) ) |
| 22 | 21 | 2exbii | |- ( E. p E. a ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) <-> E. p E. a ( p = <. a , b >. /\ ( b e. B /\ ( a e. A /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) ) |
| 23 | excom | |- ( E. p E. a ( p = <. a , b >. /\ ( b e. B /\ ( a e. A /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) <-> E. a E. p ( p = <. a , b >. /\ ( b e. B /\ ( a e. A /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) ) |
|
| 24 | opex | |- <. a , b >. e. _V |
|
| 25 | breq1 | |- ( p = <. a , b >. -> ( p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x <-> <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) |
|
| 26 | 25 | anbi2d | |- ( p = <. a , b >. -> ( ( a e. A /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) <-> ( a e. A /\ <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) |
| 27 | 26 | anbi2d | |- ( p = <. a , b >. -> ( ( b e. B /\ ( a e. A /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) <-> ( b e. B /\ ( a e. A /\ <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) ) |
| 28 | 24 27 | ceqsexv | |- ( E. p ( p = <. a , b >. /\ ( b e. B /\ ( a e. A /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) <-> ( b e. B /\ ( a e. A /\ <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) |
| 29 | 28 | exbii | |- ( E. a E. p ( p = <. a , b >. /\ ( b e. B /\ ( a e. A /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) <-> E. a ( b e. B /\ ( a e. A /\ <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) |
| 30 | 22 23 29 | 3bitri | |- ( E. p E. a ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) <-> E. a ( b e. B /\ ( a e. A /\ <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) |
| 31 | df-br | |- ( b A x <-> <. b , x >. e. A ) |
|
| 32 | risset | |- ( <. b , x >. e. A <-> E. a e. A a = <. b , x >. ) |
|
| 33 | vex | |- b e. _V |
|
| 34 | 33 | brresi | |- ( a ( 1st |` ( _V X. _V ) ) b <-> ( a e. ( _V X. _V ) /\ a 1st b ) ) |
| 35 | df-br | |- ( a ( 1st |` ( _V X. _V ) ) b <-> <. a , b >. e. ( 1st |` ( _V X. _V ) ) ) |
|
| 36 | 34 35 | bitr3i | |- ( ( a e. ( _V X. _V ) /\ a 1st b ) <-> <. a , b >. e. ( 1st |` ( _V X. _V ) ) ) |
| 37 | 36 | anbi1i | |- ( ( ( a e. ( _V X. _V ) /\ a 1st b ) /\ <. a , b >. ( 2nd o. 1st ) x ) <-> ( <. a , b >. e. ( 1st |` ( _V X. _V ) ) /\ <. a , b >. ( 2nd o. 1st ) x ) ) |
| 38 | elvv | |- ( a e. ( _V X. _V ) <-> E. p E. q a = <. p , q >. ) |
|
| 39 | 38 | anbi1i | |- ( ( a e. ( _V X. _V ) /\ ( a 1st b /\ <. a , b >. ( 2nd o. 1st ) x ) ) <-> ( E. p E. q a = <. p , q >. /\ ( a 1st b /\ <. a , b >. ( 2nd o. 1st ) x ) ) ) |
| 40 | anass | |- ( ( ( a e. ( _V X. _V ) /\ a 1st b ) /\ <. a , b >. ( 2nd o. 1st ) x ) <-> ( a e. ( _V X. _V ) /\ ( a 1st b /\ <. a , b >. ( 2nd o. 1st ) x ) ) ) |
|
| 41 | ancom | |- ( ( a = <. p , q >. /\ ( p = b /\ q = x ) ) <-> ( ( p = b /\ q = x ) /\ a = <. p , q >. ) ) |
|
| 42 | breq1 | |- ( a = <. p , q >. -> ( a 1st b <-> <. p , q >. 1st b ) ) |
|
| 43 | opeq1 | |- ( a = <. p , q >. -> <. a , b >. = <. <. p , q >. , b >. ) |
|
| 44 | 43 | breq1d | |- ( a = <. p , q >. -> ( <. a , b >. ( 2nd o. 1st ) x <-> <. <. p , q >. , b >. ( 2nd o. 1st ) x ) ) |
| 45 | 42 44 | anbi12d | |- ( a = <. p , q >. -> ( ( a 1st b /\ <. a , b >. ( 2nd o. 1st ) x ) <-> ( <. p , q >. 1st b /\ <. <. p , q >. , b >. ( 2nd o. 1st ) x ) ) ) |
| 46 | vex | |- p e. _V |
|
| 47 | vex | |- q e. _V |
|
| 48 | 46 47 | br1steq | |- ( <. p , q >. 1st b <-> b = p ) |
| 49 | equcom | |- ( b = p <-> p = b ) |
|
| 50 | 48 49 | bitri | |- ( <. p , q >. 1st b <-> p = b ) |
| 51 | opex | |- <. <. p , q >. , b >. e. _V |
|
| 52 | vex | |- x e. _V |
|
| 53 | 51 52 | brco | |- ( <. <. p , q >. , b >. ( 2nd o. 1st ) x <-> E. a ( <. <. p , q >. , b >. 1st a /\ a 2nd x ) ) |
| 54 | opex | |- <. p , q >. e. _V |
|
| 55 | 54 33 | br1steq | |- ( <. <. p , q >. , b >. 1st a <-> a = <. p , q >. ) |
| 56 | 55 | anbi1i | |- ( ( <. <. p , q >. , b >. 1st a /\ a 2nd x ) <-> ( a = <. p , q >. /\ a 2nd x ) ) |
| 57 | 56 | exbii | |- ( E. a ( <. <. p , q >. , b >. 1st a /\ a 2nd x ) <-> E. a ( a = <. p , q >. /\ a 2nd x ) ) |
| 58 | 53 57 | bitri | |- ( <. <. p , q >. , b >. ( 2nd o. 1st ) x <-> E. a ( a = <. p , q >. /\ a 2nd x ) ) |
| 59 | breq1 | |- ( a = <. p , q >. -> ( a 2nd x <-> <. p , q >. 2nd x ) ) |
|
| 60 | 54 59 | ceqsexv | |- ( E. a ( a = <. p , q >. /\ a 2nd x ) <-> <. p , q >. 2nd x ) |
| 61 | 46 47 | br2ndeq | |- ( <. p , q >. 2nd x <-> x = q ) |
| 62 | 60 61 | bitri | |- ( E. a ( a = <. p , q >. /\ a 2nd x ) <-> x = q ) |
| 63 | equcom | |- ( x = q <-> q = x ) |
|
| 64 | 58 62 63 | 3bitri | |- ( <. <. p , q >. , b >. ( 2nd o. 1st ) x <-> q = x ) |
| 65 | 50 64 | anbi12i | |- ( ( <. p , q >. 1st b /\ <. <. p , q >. , b >. ( 2nd o. 1st ) x ) <-> ( p = b /\ q = x ) ) |
| 66 | 45 65 | bitrdi | |- ( a = <. p , q >. -> ( ( a 1st b /\ <. a , b >. ( 2nd o. 1st ) x ) <-> ( p = b /\ q = x ) ) ) |
| 67 | 66 | pm5.32i | |- ( ( a = <. p , q >. /\ ( a 1st b /\ <. a , b >. ( 2nd o. 1st ) x ) ) <-> ( a = <. p , q >. /\ ( p = b /\ q = x ) ) ) |
| 68 | df-3an | |- ( ( p = b /\ q = x /\ a = <. p , q >. ) <-> ( ( p = b /\ q = x ) /\ a = <. p , q >. ) ) |
|
| 69 | 41 67 68 | 3bitr4i | |- ( ( a = <. p , q >. /\ ( a 1st b /\ <. a , b >. ( 2nd o. 1st ) x ) ) <-> ( p = b /\ q = x /\ a = <. p , q >. ) ) |
| 70 | 69 | 2exbii | |- ( E. p E. q ( a = <. p , q >. /\ ( a 1st b /\ <. a , b >. ( 2nd o. 1st ) x ) ) <-> E. p E. q ( p = b /\ q = x /\ a = <. p , q >. ) ) |
| 71 | 19.41vv | |- ( E. p E. q ( a = <. p , q >. /\ ( a 1st b /\ <. a , b >. ( 2nd o. 1st ) x ) ) <-> ( E. p E. q a = <. p , q >. /\ ( a 1st b /\ <. a , b >. ( 2nd o. 1st ) x ) ) ) |
|
| 72 | opeq1 | |- ( p = b -> <. p , q >. = <. b , q >. ) |
|
| 73 | 72 | eqeq2d | |- ( p = b -> ( a = <. p , q >. <-> a = <. b , q >. ) ) |
| 74 | opeq2 | |- ( q = x -> <. b , q >. = <. b , x >. ) |
|
| 75 | 74 | eqeq2d | |- ( q = x -> ( a = <. b , q >. <-> a = <. b , x >. ) ) |
| 76 | 33 52 73 75 | ceqsex2v | |- ( E. p E. q ( p = b /\ q = x /\ a = <. p , q >. ) <-> a = <. b , x >. ) |
| 77 | 70 71 76 | 3bitr3ri | |- ( a = <. b , x >. <-> ( E. p E. q a = <. p , q >. /\ ( a 1st b /\ <. a , b >. ( 2nd o. 1st ) x ) ) ) |
| 78 | 39 40 77 | 3bitr4ri | |- ( a = <. b , x >. <-> ( ( a e. ( _V X. _V ) /\ a 1st b ) /\ <. a , b >. ( 2nd o. 1st ) x ) ) |
| 79 | 52 | brresi | |- ( <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x <-> ( <. a , b >. e. ( 1st |` ( _V X. _V ) ) /\ <. a , b >. ( 2nd o. 1st ) x ) ) |
| 80 | 37 78 79 | 3bitr4i | |- ( a = <. b , x >. <-> <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) |
| 81 | 80 | rexbii | |- ( E. a e. A a = <. b , x >. <-> E. a e. A <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) |
| 82 | 32 81 | bitri | |- ( <. b , x >. e. A <-> E. a e. A <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) |
| 83 | df-rex | |- ( E. a e. A <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x <-> E. a ( a e. A /\ <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) |
|
| 84 | 31 82 83 | 3bitri | |- ( b A x <-> E. a ( a e. A /\ <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) |
| 85 | 84 | anbi2i | |- ( ( b e. B /\ b A x ) <-> ( b e. B /\ E. a ( a e. A /\ <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) |
| 86 | 17 30 85 | 3bitr4ri | |- ( ( b e. B /\ b A x ) <-> E. p E. a ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) |
| 87 | 86 | exbii | |- ( E. b ( b e. B /\ b A x ) <-> E. b E. p E. a ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) |
| 88 | 52 | elima2 | |- ( x e. ( A " B ) <-> E. b ( b e. B /\ b A x ) ) |
| 89 | 52 | elima2 | |- ( x e. ( ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) " ( A X. B ) ) <-> E. p ( p e. ( A X. B ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) |
| 90 | elxp | |- ( p e. ( A X. B ) <-> E. a E. b ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) ) |
|
| 91 | 90 | anbi1i | |- ( ( p e. ( A X. B ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) <-> ( E. a E. b ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) |
| 92 | 19.41vv | |- ( E. a E. b ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) <-> ( E. a E. b ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) |
|
| 93 | 91 92 | bitr4i | |- ( ( p e. ( A X. B ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) <-> E. a E. b ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) |
| 94 | 93 | exbii | |- ( E. p ( p e. ( A X. B ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) <-> E. p E. a E. b ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) |
| 95 | exrot3 | |- ( E. p E. a E. b ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) <-> E. a E. b E. p ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) |
|
| 96 | exrot3 | |- ( E. a E. b E. p ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) <-> E. b E. p E. a ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) |
|
| 97 | 95 96 | bitri | |- ( E. p E. a E. b ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) <-> E. b E. p E. a ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) |
| 98 | 89 94 97 | 3bitri | |- ( x e. ( ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) " ( A X. B ) ) <-> E. b E. p E. a ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) |
| 99 | 87 88 98 | 3bitr4ri | |- ( x e. ( ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) " ( A X. B ) ) <-> x e. ( A " B ) ) |
| 100 | 99 | eqriv | |- ( ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) " ( A X. B ) ) = ( A " B ) |
| 101 | 100 | eqeq2i | |- ( C = ( ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) " ( A X. B ) ) <-> C = ( A " B ) ) |
| 102 | 16 101 | bitri | |- ( ( A X. B ) Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) C <-> C = ( A " B ) ) |
| 103 | 5 15 102 | 3bitri | |- ( <. A , B >. Img C <-> C = ( A " B ) ) |