This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem anbi1ci

Description: Variant of anbi1i with commutation. (Contributed by Peter Mazsa, 7-Mar-2020)

Ref Expression
Hypothesis anbi.1
|- ( ph <-> ps )
Assertion anbi1ci
|- ( ( ch /\ ph ) <-> ( ps /\ ch ) )

Proof

Step Hyp Ref Expression
1 anbi.1
 |-  ( ph <-> ps )
2 1 anbi2i
 |-  ( ( ch /\ ph ) <-> ( ch /\ ps ) )
3 2 biancomi
 |-  ( ( ch /\ ph ) <-> ( ps /\ ch ) )