This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation over Bigcup . (Contributed by Scott Fenton, 11-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | brbigcup.1 | |- B e. _V |
|
| Assertion | brbigcup | |- ( A Bigcup B <-> U. A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brbigcup.1 | |- B e. _V |
|
| 2 | relbigcup | |- Rel Bigcup |
|
| 3 | 2 | brrelex1i | |- ( A Bigcup B -> A e. _V ) |
| 4 | eleq1 | |- ( U. A = B -> ( U. A e. _V <-> B e. _V ) ) |
|
| 5 | 1 4 | mpbiri | |- ( U. A = B -> U. A e. _V ) |
| 6 | uniexb | |- ( A e. _V <-> U. A e. _V ) |
|
| 7 | 5 6 | sylibr | |- ( U. A = B -> A e. _V ) |
| 8 | breq1 | |- ( x = A -> ( x Bigcup B <-> A Bigcup B ) ) |
|
| 9 | unieq | |- ( x = A -> U. x = U. A ) |
|
| 10 | 9 | eqeq1d | |- ( x = A -> ( U. x = B <-> U. A = B ) ) |
| 11 | vex | |- x e. _V |
|
| 12 | df-bigcup | |- Bigcup = ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E o. _E ) (x) _V ) ) ) |
|
| 13 | brxp | |- ( x ( _V X. _V ) B <-> ( x e. _V /\ B e. _V ) ) |
|
| 14 | 11 1 13 | mpbir2an | |- x ( _V X. _V ) B |
| 15 | epel | |- ( y _E z <-> y e. z ) |
|
| 16 | 15 | rexbii | |- ( E. z e. x y _E z <-> E. z e. x y e. z ) |
| 17 | vex | |- y e. _V |
|
| 18 | 17 11 | coep | |- ( y ( _E o. _E ) x <-> E. z e. x y _E z ) |
| 19 | eluni2 | |- ( y e. U. x <-> E. z e. x y e. z ) |
|
| 20 | 16 18 19 | 3bitr4ri | |- ( y e. U. x <-> y ( _E o. _E ) x ) |
| 21 | 11 1 12 14 20 | brtxpsd3 | |- ( x Bigcup B <-> B = U. x ) |
| 22 | eqcom | |- ( B = U. x <-> U. x = B ) |
|
| 23 | 21 22 | bitri | |- ( x Bigcup B <-> U. x = B ) |
| 24 | 8 10 23 | vtoclbg | |- ( A e. _V -> ( A Bigcup B <-> U. A = B ) ) |
| 25 | 3 7 24 | pm5.21nii | |- ( A Bigcup B <-> U. A = B ) |