This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Write out the top and bottom parts of the binomial coefficient ( N _C K ) = ( N x. ( N - 1 ) x. ... x. ( ( N - K ) + 1 ) ) / K ! explicitly. In this form, it is valid even for N < K , although it is no longer valid for nonpositive K . (Contributed by Mario Carneiro, 22-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcval5 | |- ( ( N e. NN0 /\ K e. NN ) -> ( N _C K ) = ( ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) / ( ! ` K ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bcval2 | |- ( K e. ( 0 ... N ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
|
| 2 | 1 | adantl | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
| 3 | mulcl | |- ( ( k e. CC /\ x e. CC ) -> ( k x. x ) e. CC ) |
|
| 4 | 3 | adantl | |- ( ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) /\ ( k e. CC /\ x e. CC ) ) -> ( k x. x ) e. CC ) |
| 5 | mulass | |- ( ( k e. CC /\ x e. CC /\ y e. CC ) -> ( ( k x. x ) x. y ) = ( k x. ( x x. y ) ) ) |
|
| 6 | 5 | adantl | |- ( ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) /\ ( k e. CC /\ x e. CC /\ y e. CC ) ) -> ( ( k x. x ) x. y ) = ( k x. ( x x. y ) ) ) |
| 7 | simplr | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> K e. NN ) |
|
| 8 | elfzuz3 | |- ( K e. ( 0 ... N ) -> N e. ( ZZ>= ` K ) ) |
|
| 9 | 8 | adantl | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> N e. ( ZZ>= ` K ) ) |
| 10 | eluznn | |- ( ( K e. NN /\ N e. ( ZZ>= ` K ) ) -> N e. NN ) |
|
| 11 | 7 9 10 | syl2anc | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> N e. NN ) |
| 12 | 11 | adantrr | |- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> N e. NN ) |
| 13 | simplr | |- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> K e. NN ) |
|
| 14 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 15 | nnrp | |- ( K e. NN -> K e. RR+ ) |
|
| 16 | ltsubrp | |- ( ( N e. RR /\ K e. RR+ ) -> ( N - K ) < N ) |
|
| 17 | 14 15 16 | syl2an | |- ( ( N e. NN /\ K e. NN ) -> ( N - K ) < N ) |
| 18 | 12 13 17 | syl2anc | |- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( N - K ) < N ) |
| 19 | 12 | nnzd | |- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> N e. ZZ ) |
| 20 | nnz | |- ( K e. NN -> K e. ZZ ) |
|
| 21 | 20 | ad2antlr | |- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> K e. ZZ ) |
| 22 | 19 21 | zsubcld | |- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( N - K ) e. ZZ ) |
| 23 | zltp1le | |- ( ( ( N - K ) e. ZZ /\ N e. ZZ ) -> ( ( N - K ) < N <-> ( ( N - K ) + 1 ) <_ N ) ) |
|
| 24 | 22 19 23 | syl2anc | |- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( ( N - K ) < N <-> ( ( N - K ) + 1 ) <_ N ) ) |
| 25 | 18 24 | mpbid | |- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( ( N - K ) + 1 ) <_ N ) |
| 26 | 22 | peano2zd | |- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( ( N - K ) + 1 ) e. ZZ ) |
| 27 | eluz | |- ( ( ( ( N - K ) + 1 ) e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` ( ( N - K ) + 1 ) ) <-> ( ( N - K ) + 1 ) <_ N ) ) |
|
| 28 | 26 19 27 | syl2anc | |- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( N e. ( ZZ>= ` ( ( N - K ) + 1 ) ) <-> ( ( N - K ) + 1 ) <_ N ) ) |
| 29 | 25 28 | mpbird | |- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> N e. ( ZZ>= ` ( ( N - K ) + 1 ) ) ) |
| 30 | simprr | |- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( N - K ) e. NN ) |
|
| 31 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 32 | 30 31 | eleqtrdi | |- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( N - K ) e. ( ZZ>= ` 1 ) ) |
| 33 | fvi | |- ( k e. ( 1 ... N ) -> ( _I ` k ) = k ) |
|
| 34 | elfzelz | |- ( k e. ( 1 ... N ) -> k e. ZZ ) |
|
| 35 | 34 | zcnd | |- ( k e. ( 1 ... N ) -> k e. CC ) |
| 36 | 33 35 | eqeltrd | |- ( k e. ( 1 ... N ) -> ( _I ` k ) e. CC ) |
| 37 | 36 | adantl | |- ( ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) /\ k e. ( 1 ... N ) ) -> ( _I ` k ) e. CC ) |
| 38 | 4 6 29 32 37 | seqsplit | |- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( seq 1 ( x. , _I ) ` N ) = ( ( seq 1 ( x. , _I ) ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) ) |
| 39 | facnn | |- ( N e. NN -> ( ! ` N ) = ( seq 1 ( x. , _I ) ` N ) ) |
|
| 40 | 12 39 | syl | |- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( ! ` N ) = ( seq 1 ( x. , _I ) ` N ) ) |
| 41 | facnn | |- ( ( N - K ) e. NN -> ( ! ` ( N - K ) ) = ( seq 1 ( x. , _I ) ` ( N - K ) ) ) |
|
| 42 | 30 41 | syl | |- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( ! ` ( N - K ) ) = ( seq 1 ( x. , _I ) ` ( N - K ) ) ) |
| 43 | 42 | oveq1d | |- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( ( ! ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) = ( ( seq 1 ( x. , _I ) ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) ) |
| 44 | 38 40 43 | 3eqtr4d | |- ( ( ( N e. NN0 /\ K e. NN ) /\ ( K e. ( 0 ... N ) /\ ( N - K ) e. NN ) ) -> ( ! ` N ) = ( ( ! ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) ) |
| 45 | 44 | expr | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ( N - K ) e. NN -> ( ! ` N ) = ( ( ! ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) ) ) |
| 46 | simpll | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> N e. NN0 ) |
|
| 47 | faccl | |- ( N e. NN0 -> ( ! ` N ) e. NN ) |
|
| 48 | nncn | |- ( ( ! ` N ) e. NN -> ( ! ` N ) e. CC ) |
|
| 49 | 46 47 48 | 3syl | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` N ) e. CC ) |
| 50 | 49 | mullidd | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( 1 x. ( ! ` N ) ) = ( ! ` N ) ) |
| 51 | 11 39 | syl | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` N ) = ( seq 1 ( x. , _I ) ` N ) ) |
| 52 | 51 | oveq2d | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( 1 x. ( ! ` N ) ) = ( 1 x. ( seq 1 ( x. , _I ) ` N ) ) ) |
| 53 | 50 52 | eqtr3d | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` N ) = ( 1 x. ( seq 1 ( x. , _I ) ` N ) ) ) |
| 54 | fveq2 | |- ( ( N - K ) = 0 -> ( ! ` ( N - K ) ) = ( ! ` 0 ) ) |
|
| 55 | fac0 | |- ( ! ` 0 ) = 1 |
|
| 56 | 54 55 | eqtrdi | |- ( ( N - K ) = 0 -> ( ! ` ( N - K ) ) = 1 ) |
| 57 | oveq1 | |- ( ( N - K ) = 0 -> ( ( N - K ) + 1 ) = ( 0 + 1 ) ) |
|
| 58 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 59 | 57 58 | eqtrdi | |- ( ( N - K ) = 0 -> ( ( N - K ) + 1 ) = 1 ) |
| 60 | 59 | seqeq1d | |- ( ( N - K ) = 0 -> seq ( ( N - K ) + 1 ) ( x. , _I ) = seq 1 ( x. , _I ) ) |
| 61 | 60 | fveq1d | |- ( ( N - K ) = 0 -> ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) = ( seq 1 ( x. , _I ) ` N ) ) |
| 62 | 56 61 | oveq12d | |- ( ( N - K ) = 0 -> ( ( ! ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) = ( 1 x. ( seq 1 ( x. , _I ) ` N ) ) ) |
| 63 | 62 | eqeq2d | |- ( ( N - K ) = 0 -> ( ( ! ` N ) = ( ( ! ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) <-> ( ! ` N ) = ( 1 x. ( seq 1 ( x. , _I ) ` N ) ) ) ) |
| 64 | 53 63 | syl5ibrcom | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ( N - K ) = 0 -> ( ! ` N ) = ( ( ! ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) ) ) |
| 65 | fznn0sub | |- ( K e. ( 0 ... N ) -> ( N - K ) e. NN0 ) |
|
| 66 | 65 | adantl | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( N - K ) e. NN0 ) |
| 67 | elnn0 | |- ( ( N - K ) e. NN0 <-> ( ( N - K ) e. NN \/ ( N - K ) = 0 ) ) |
|
| 68 | 66 67 | sylib | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ( N - K ) e. NN \/ ( N - K ) = 0 ) ) |
| 69 | 45 64 68 | mpjaod | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` N ) = ( ( ! ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) ) |
| 70 | 69 | oveq1d | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) = ( ( ( ! ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
| 71 | eqid | |- ( ZZ>= ` ( ( N - K ) + 1 ) ) = ( ZZ>= ` ( ( N - K ) + 1 ) ) |
|
| 72 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 73 | zsubcl | |- ( ( N e. ZZ /\ K e. ZZ ) -> ( N - K ) e. ZZ ) |
|
| 74 | 72 20 73 | syl2an | |- ( ( N e. NN0 /\ K e. NN ) -> ( N - K ) e. ZZ ) |
| 75 | 74 | peano2zd | |- ( ( N e. NN0 /\ K e. NN ) -> ( ( N - K ) + 1 ) e. ZZ ) |
| 76 | 75 | adantr | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ( N - K ) + 1 ) e. ZZ ) |
| 77 | fvi | |- ( k e. ( ZZ>= ` ( ( N - K ) + 1 ) ) -> ( _I ` k ) = k ) |
|
| 78 | eluzelcn | |- ( k e. ( ZZ>= ` ( ( N - K ) + 1 ) ) -> k e. CC ) |
|
| 79 | 77 78 | eqeltrd | |- ( k e. ( ZZ>= ` ( ( N - K ) + 1 ) ) -> ( _I ` k ) e. CC ) |
| 80 | 79 | adantl | |- ( ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) /\ k e. ( ZZ>= ` ( ( N - K ) + 1 ) ) ) -> ( _I ` k ) e. CC ) |
| 81 | 3 | adantl | |- ( ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) /\ ( k e. CC /\ x e. CC ) ) -> ( k x. x ) e. CC ) |
| 82 | 71 76 80 81 | seqf | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> seq ( ( N - K ) + 1 ) ( x. , _I ) : ( ZZ>= ` ( ( N - K ) + 1 ) ) --> CC ) |
| 83 | 11 7 17 | syl2anc | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( N - K ) < N ) |
| 84 | 74 | adantr | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( N - K ) e. ZZ ) |
| 85 | 11 | nnzd | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> N e. ZZ ) |
| 86 | 84 85 23 | syl2anc | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ( N - K ) < N <-> ( ( N - K ) + 1 ) <_ N ) ) |
| 87 | 83 86 | mpbid | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ( N - K ) + 1 ) <_ N ) |
| 88 | 76 85 27 | syl2anc | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( N e. ( ZZ>= ` ( ( N - K ) + 1 ) ) <-> ( ( N - K ) + 1 ) <_ N ) ) |
| 89 | 87 88 | mpbird | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> N e. ( ZZ>= ` ( ( N - K ) + 1 ) ) ) |
| 90 | 82 89 | ffvelcdmd | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) e. CC ) |
| 91 | elfznn0 | |- ( K e. ( 0 ... N ) -> K e. NN0 ) |
|
| 92 | 91 | adantl | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> K e. NN0 ) |
| 93 | 92 | faccld | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` K ) e. NN ) |
| 94 | 93 | nncnd | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` K ) e. CC ) |
| 95 | 66 | faccld | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` ( N - K ) ) e. NN ) |
| 96 | 95 | nncnd | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` ( N - K ) ) e. CC ) |
| 97 | 93 | nnne0d | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` K ) =/= 0 ) |
| 98 | 95 | nnne0d | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ! ` ( N - K ) ) =/= 0 ) |
| 99 | 90 94 96 97 98 | divcan5d | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( ( ( ! ` ( N - K ) ) x. ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) = ( ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) / ( ! ` K ) ) ) |
| 100 | 2 70 99 | 3eqtrd | |- ( ( ( N e. NN0 /\ K e. NN ) /\ K e. ( 0 ... N ) ) -> ( N _C K ) = ( ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) / ( ! ` K ) ) ) |
| 101 | nnnn0 | |- ( K e. NN -> K e. NN0 ) |
|
| 102 | 101 | ad2antlr | |- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> K e. NN0 ) |
| 103 | faccl | |- ( K e. NN0 -> ( ! ` K ) e. NN ) |
|
| 104 | nncn | |- ( ( ! ` K ) e. NN -> ( ! ` K ) e. CC ) |
|
| 105 | nnne0 | |- ( ( ! ` K ) e. NN -> ( ! ` K ) =/= 0 ) |
|
| 106 | 104 105 | div0d | |- ( ( ! ` K ) e. NN -> ( 0 / ( ! ` K ) ) = 0 ) |
| 107 | 102 103 106 | 3syl | |- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( 0 / ( ! ` K ) ) = 0 ) |
| 108 | 3 | adantl | |- ( ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) /\ ( k e. CC /\ x e. CC ) ) -> ( k x. x ) e. CC ) |
| 109 | fvi | |- ( k e. ( ( ( N - K ) + 1 ) ... N ) -> ( _I ` k ) = k ) |
|
| 110 | elfzelz | |- ( k e. ( ( ( N - K ) + 1 ) ... N ) -> k e. ZZ ) |
|
| 111 | 110 | zcnd | |- ( k e. ( ( ( N - K ) + 1 ) ... N ) -> k e. CC ) |
| 112 | 109 111 | eqeltrd | |- ( k e. ( ( ( N - K ) + 1 ) ... N ) -> ( _I ` k ) e. CC ) |
| 113 | 112 | adantl | |- ( ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) /\ k e. ( ( ( N - K ) + 1 ) ... N ) ) -> ( _I ` k ) e. CC ) |
| 114 | mul02 | |- ( k e. CC -> ( 0 x. k ) = 0 ) |
|
| 115 | 114 | adantl | |- ( ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) /\ k e. CC ) -> ( 0 x. k ) = 0 ) |
| 116 | mul01 | |- ( k e. CC -> ( k x. 0 ) = 0 ) |
|
| 117 | 116 | adantl | |- ( ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) /\ k e. CC ) -> ( k x. 0 ) = 0 ) |
| 118 | 75 | adantr | |- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( ( N - K ) + 1 ) e. ZZ ) |
| 119 | 72 | ad2antrr | |- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> N e. ZZ ) |
| 120 | 0zd | |- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> 0 e. ZZ ) |
|
| 121 | simpr | |- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> -. K e. ( 0 ... N ) ) |
|
| 122 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 123 | 102 122 | eleqtrdi | |- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> K e. ( ZZ>= ` 0 ) ) |
| 124 | elfz5 | |- ( ( K e. ( ZZ>= ` 0 ) /\ N e. ZZ ) -> ( K e. ( 0 ... N ) <-> K <_ N ) ) |
|
| 125 | 123 119 124 | syl2anc | |- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( K e. ( 0 ... N ) <-> K <_ N ) ) |
| 126 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 127 | 126 | ad2antrr | |- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> N e. RR ) |
| 128 | nnre | |- ( K e. NN -> K e. RR ) |
|
| 129 | 128 | ad2antlr | |- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> K e. RR ) |
| 130 | 127 129 | subge0d | |- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( 0 <_ ( N - K ) <-> K <_ N ) ) |
| 131 | 125 130 | bitr4d | |- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( K e. ( 0 ... N ) <-> 0 <_ ( N - K ) ) ) |
| 132 | 121 131 | mtbid | |- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> -. 0 <_ ( N - K ) ) |
| 133 | 74 | adantr | |- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( N - K ) e. ZZ ) |
| 134 | 133 | zred | |- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( N - K ) e. RR ) |
| 135 | 0re | |- 0 e. RR |
|
| 136 | ltnle | |- ( ( ( N - K ) e. RR /\ 0 e. RR ) -> ( ( N - K ) < 0 <-> -. 0 <_ ( N - K ) ) ) |
|
| 137 | 134 135 136 | sylancl | |- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( ( N - K ) < 0 <-> -. 0 <_ ( N - K ) ) ) |
| 138 | 132 137 | mpbird | |- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( N - K ) < 0 ) |
| 139 | 0z | |- 0 e. ZZ |
|
| 140 | zltp1le | |- ( ( ( N - K ) e. ZZ /\ 0 e. ZZ ) -> ( ( N - K ) < 0 <-> ( ( N - K ) + 1 ) <_ 0 ) ) |
|
| 141 | 133 139 140 | sylancl | |- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( ( N - K ) < 0 <-> ( ( N - K ) + 1 ) <_ 0 ) ) |
| 142 | 138 141 | mpbid | |- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( ( N - K ) + 1 ) <_ 0 ) |
| 143 | nn0ge0 | |- ( N e. NN0 -> 0 <_ N ) |
|
| 144 | 143 | ad2antrr | |- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> 0 <_ N ) |
| 145 | 118 119 120 142 144 | elfzd | |- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> 0 e. ( ( ( N - K ) + 1 ) ... N ) ) |
| 146 | simpll | |- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> N e. NN0 ) |
|
| 147 | 0cn | |- 0 e. CC |
|
| 148 | fvi | |- ( 0 e. CC -> ( _I ` 0 ) = 0 ) |
|
| 149 | 147 148 | mp1i | |- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( _I ` 0 ) = 0 ) |
| 150 | 108 113 115 117 145 146 149 | seqz | |- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) = 0 ) |
| 151 | 150 | oveq1d | |- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) / ( ! ` K ) ) = ( 0 / ( ! ` K ) ) ) |
| 152 | bcval3 | |- ( ( N e. NN0 /\ K e. ZZ /\ -. K e. ( 0 ... N ) ) -> ( N _C K ) = 0 ) |
|
| 153 | 20 152 | syl3an2 | |- ( ( N e. NN0 /\ K e. NN /\ -. K e. ( 0 ... N ) ) -> ( N _C K ) = 0 ) |
| 154 | 153 | 3expa | |- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( N _C K ) = 0 ) |
| 155 | 107 151 154 | 3eqtr4rd | |- ( ( ( N e. NN0 /\ K e. NN ) /\ -. K e. ( 0 ... N ) ) -> ( N _C K ) = ( ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) / ( ! ` K ) ) ) |
| 156 | 100 155 | pm2.61dan | |- ( ( N e. NN0 /\ K e. NN ) -> ( N _C K ) = ( ( seq ( ( N - K ) + 1 ) ( x. , _I ) ` N ) / ( ! ` K ) ) ) |