This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binomial coefficient: N choose 2 . (Contributed by Mario Carneiro, 22-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcn2 | |- ( N e. NN0 -> ( N _C 2 ) = ( ( N x. ( N - 1 ) ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn | |- 2 e. NN |
|
| 2 | bcval5 | |- ( ( N e. NN0 /\ 2 e. NN ) -> ( N _C 2 ) = ( ( seq ( ( N - 2 ) + 1 ) ( x. , _I ) ` N ) / ( ! ` 2 ) ) ) |
|
| 3 | 1 2 | mpan2 | |- ( N e. NN0 -> ( N _C 2 ) = ( ( seq ( ( N - 2 ) + 1 ) ( x. , _I ) ` N ) / ( ! ` 2 ) ) ) |
| 4 | 2m1e1 | |- ( 2 - 1 ) = 1 |
|
| 5 | 4 | oveq2i | |- ( ( N - 2 ) + ( 2 - 1 ) ) = ( ( N - 2 ) + 1 ) |
| 6 | nn0cn | |- ( N e. NN0 -> N e. CC ) |
|
| 7 | 2cn | |- 2 e. CC |
|
| 8 | ax-1cn | |- 1 e. CC |
|
| 9 | npncan | |- ( ( N e. CC /\ 2 e. CC /\ 1 e. CC ) -> ( ( N - 2 ) + ( 2 - 1 ) ) = ( N - 1 ) ) |
|
| 10 | 7 8 9 | mp3an23 | |- ( N e. CC -> ( ( N - 2 ) + ( 2 - 1 ) ) = ( N - 1 ) ) |
| 11 | 6 10 | syl | |- ( N e. NN0 -> ( ( N - 2 ) + ( 2 - 1 ) ) = ( N - 1 ) ) |
| 12 | 5 11 | eqtr3id | |- ( N e. NN0 -> ( ( N - 2 ) + 1 ) = ( N - 1 ) ) |
| 13 | 12 | seqeq1d | |- ( N e. NN0 -> seq ( ( N - 2 ) + 1 ) ( x. , _I ) = seq ( N - 1 ) ( x. , _I ) ) |
| 14 | 13 | fveq1d | |- ( N e. NN0 -> ( seq ( ( N - 2 ) + 1 ) ( x. , _I ) ` N ) = ( seq ( N - 1 ) ( x. , _I ) ` N ) ) |
| 15 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 16 | peano2zm | |- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
|
| 17 | 15 16 | syl | |- ( N e. NN0 -> ( N - 1 ) e. ZZ ) |
| 18 | uzid | |- ( N e. ZZ -> N e. ( ZZ>= ` N ) ) |
|
| 19 | 15 18 | syl | |- ( N e. NN0 -> N e. ( ZZ>= ` N ) ) |
| 20 | npcan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
|
| 21 | 6 8 20 | sylancl | |- ( N e. NN0 -> ( ( N - 1 ) + 1 ) = N ) |
| 22 | 21 | fveq2d | |- ( N e. NN0 -> ( ZZ>= ` ( ( N - 1 ) + 1 ) ) = ( ZZ>= ` N ) ) |
| 23 | 19 22 | eleqtrrd | |- ( N e. NN0 -> N e. ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) |
| 24 | seqm1 | |- ( ( ( N - 1 ) e. ZZ /\ N e. ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) -> ( seq ( N - 1 ) ( x. , _I ) ` N ) = ( ( seq ( N - 1 ) ( x. , _I ) ` ( N - 1 ) ) x. ( _I ` N ) ) ) |
|
| 25 | 17 23 24 | syl2anc | |- ( N e. NN0 -> ( seq ( N - 1 ) ( x. , _I ) ` N ) = ( ( seq ( N - 1 ) ( x. , _I ) ` ( N - 1 ) ) x. ( _I ` N ) ) ) |
| 26 | seq1 | |- ( ( N - 1 ) e. ZZ -> ( seq ( N - 1 ) ( x. , _I ) ` ( N - 1 ) ) = ( _I ` ( N - 1 ) ) ) |
|
| 27 | 17 26 | syl | |- ( N e. NN0 -> ( seq ( N - 1 ) ( x. , _I ) ` ( N - 1 ) ) = ( _I ` ( N - 1 ) ) ) |
| 28 | fvi | |- ( ( N - 1 ) e. ZZ -> ( _I ` ( N - 1 ) ) = ( N - 1 ) ) |
|
| 29 | 17 28 | syl | |- ( N e. NN0 -> ( _I ` ( N - 1 ) ) = ( N - 1 ) ) |
| 30 | 27 29 | eqtrd | |- ( N e. NN0 -> ( seq ( N - 1 ) ( x. , _I ) ` ( N - 1 ) ) = ( N - 1 ) ) |
| 31 | fvi | |- ( N e. NN0 -> ( _I ` N ) = N ) |
|
| 32 | 30 31 | oveq12d | |- ( N e. NN0 -> ( ( seq ( N - 1 ) ( x. , _I ) ` ( N - 1 ) ) x. ( _I ` N ) ) = ( ( N - 1 ) x. N ) ) |
| 33 | 25 32 | eqtrd | |- ( N e. NN0 -> ( seq ( N - 1 ) ( x. , _I ) ` N ) = ( ( N - 1 ) x. N ) ) |
| 34 | subcl | |- ( ( N e. CC /\ 1 e. CC ) -> ( N - 1 ) e. CC ) |
|
| 35 | 6 8 34 | sylancl | |- ( N e. NN0 -> ( N - 1 ) e. CC ) |
| 36 | 35 6 | mulcomd | |- ( N e. NN0 -> ( ( N - 1 ) x. N ) = ( N x. ( N - 1 ) ) ) |
| 37 | 33 36 | eqtrd | |- ( N e. NN0 -> ( seq ( N - 1 ) ( x. , _I ) ` N ) = ( N x. ( N - 1 ) ) ) |
| 38 | 14 37 | eqtrd | |- ( N e. NN0 -> ( seq ( ( N - 2 ) + 1 ) ( x. , _I ) ` N ) = ( N x. ( N - 1 ) ) ) |
| 39 | fac2 | |- ( ! ` 2 ) = 2 |
|
| 40 | 39 | a1i | |- ( N e. NN0 -> ( ! ` 2 ) = 2 ) |
| 41 | 38 40 | oveq12d | |- ( N e. NN0 -> ( ( seq ( ( N - 2 ) + 1 ) ( x. , _I ) ` N ) / ( ! ` 2 ) ) = ( ( N x. ( N - 1 ) ) / 2 ) ) |
| 42 | 3 41 | eqtrd | |- ( N e. NN0 -> ( N _C 2 ) = ( ( N x. ( N - 1 ) ) / 2 ) ) |