This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Range of the recursive sequence builder (special case of seqf2 ). (Contributed by Mario Carneiro, 24-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqf.1 | |- Z = ( ZZ>= ` M ) |
|
| seqf.2 | |- ( ph -> M e. ZZ ) |
||
| seqf.3 | |- ( ( ph /\ x e. Z ) -> ( F ` x ) e. S ) |
||
| seqf.4 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
||
| Assertion | seqf | |- ( ph -> seq M ( .+ , F ) : Z --> S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqf.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | seqf.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | seqf.3 | |- ( ( ph /\ x e. Z ) -> ( F ` x ) e. S ) |
|
| 4 | seqf.4 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
|
| 5 | fveq2 | |- ( x = M -> ( F ` x ) = ( F ` M ) ) |
|
| 6 | 5 | eleq1d | |- ( x = M -> ( ( F ` x ) e. S <-> ( F ` M ) e. S ) ) |
| 7 | 3 | ralrimiva | |- ( ph -> A. x e. Z ( F ` x ) e. S ) |
| 8 | uzid | |- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
|
| 9 | 2 8 | syl | |- ( ph -> M e. ( ZZ>= ` M ) ) |
| 10 | 9 1 | eleqtrrdi | |- ( ph -> M e. Z ) |
| 11 | 6 7 10 | rspcdva | |- ( ph -> ( F ` M ) e. S ) |
| 12 | peano2uzr | |- ( ( M e. ZZ /\ x e. ( ZZ>= ` ( M + 1 ) ) ) -> x e. ( ZZ>= ` M ) ) |
|
| 13 | 2 12 | sylan | |- ( ( ph /\ x e. ( ZZ>= ` ( M + 1 ) ) ) -> x e. ( ZZ>= ` M ) ) |
| 14 | 13 1 | eleqtrrdi | |- ( ( ph /\ x e. ( ZZ>= ` ( M + 1 ) ) ) -> x e. Z ) |
| 15 | 14 3 | syldan | |- ( ( ph /\ x e. ( ZZ>= ` ( M + 1 ) ) ) -> ( F ` x ) e. S ) |
| 16 | 11 4 1 2 15 | seqf2 | |- ( ph -> seq M ( .+ , F ) : Z --> S ) |