This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of complex numbers is associative. Axiom 10 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-mulass . (Contributed by NM, 3-Sep-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axmulass | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) x. C ) = ( A x. ( B x. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcnqs | |- CC = ( ( R. X. R. ) /. `' _E ) |
|
| 2 | mulcnsrec | |- ( ( ( x e. R. /\ y e. R. ) /\ ( z e. R. /\ w e. R. ) ) -> ( [ <. x , y >. ] `' _E x. [ <. z , w >. ] `' _E ) = [ <. ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) , ( ( y .R z ) +R ( x .R w ) ) >. ] `' _E ) |
|
| 3 | mulcnsrec | |- ( ( ( z e. R. /\ w e. R. ) /\ ( v e. R. /\ u e. R. ) ) -> ( [ <. z , w >. ] `' _E x. [ <. v , u >. ] `' _E ) = [ <. ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) , ( ( w .R v ) +R ( z .R u ) ) >. ] `' _E ) |
|
| 4 | mulcnsrec | |- ( ( ( ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) e. R. /\ ( ( y .R z ) +R ( x .R w ) ) e. R. ) /\ ( v e. R. /\ u e. R. ) ) -> ( [ <. ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) , ( ( y .R z ) +R ( x .R w ) ) >. ] `' _E x. [ <. v , u >. ] `' _E ) = [ <. ( ( ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) .R v ) +R ( -1R .R ( ( ( y .R z ) +R ( x .R w ) ) .R u ) ) ) , ( ( ( ( y .R z ) +R ( x .R w ) ) .R v ) +R ( ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) .R u ) ) >. ] `' _E ) |
|
| 5 | mulcnsrec | |- ( ( ( x e. R. /\ y e. R. ) /\ ( ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) e. R. /\ ( ( w .R v ) +R ( z .R u ) ) e. R. ) ) -> ( [ <. x , y >. ] `' _E x. [ <. ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) , ( ( w .R v ) +R ( z .R u ) ) >. ] `' _E ) = [ <. ( ( x .R ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) ) +R ( -1R .R ( y .R ( ( w .R v ) +R ( z .R u ) ) ) ) ) , ( ( y .R ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) ) +R ( x .R ( ( w .R v ) +R ( z .R u ) ) ) ) >. ] `' _E ) |
|
| 6 | mulclsr | |- ( ( x e. R. /\ z e. R. ) -> ( x .R z ) e. R. ) |
|
| 7 | m1r | |- -1R e. R. |
|
| 8 | mulclsr | |- ( ( y e. R. /\ w e. R. ) -> ( y .R w ) e. R. ) |
|
| 9 | mulclsr | |- ( ( -1R e. R. /\ ( y .R w ) e. R. ) -> ( -1R .R ( y .R w ) ) e. R. ) |
|
| 10 | 7 8 9 | sylancr | |- ( ( y e. R. /\ w e. R. ) -> ( -1R .R ( y .R w ) ) e. R. ) |
| 11 | addclsr | |- ( ( ( x .R z ) e. R. /\ ( -1R .R ( y .R w ) ) e. R. ) -> ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) e. R. ) |
|
| 12 | 6 10 11 | syl2an | |- ( ( ( x e. R. /\ z e. R. ) /\ ( y e. R. /\ w e. R. ) ) -> ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) e. R. ) |
| 13 | 12 | an4s | |- ( ( ( x e. R. /\ y e. R. ) /\ ( z e. R. /\ w e. R. ) ) -> ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) e. R. ) |
| 14 | mulclsr | |- ( ( y e. R. /\ z e. R. ) -> ( y .R z ) e. R. ) |
|
| 15 | mulclsr | |- ( ( x e. R. /\ w e. R. ) -> ( x .R w ) e. R. ) |
|
| 16 | addclsr | |- ( ( ( y .R z ) e. R. /\ ( x .R w ) e. R. ) -> ( ( y .R z ) +R ( x .R w ) ) e. R. ) |
|
| 17 | 14 15 16 | syl2anr | |- ( ( ( x e. R. /\ w e. R. ) /\ ( y e. R. /\ z e. R. ) ) -> ( ( y .R z ) +R ( x .R w ) ) e. R. ) |
| 18 | 17 | an42s | |- ( ( ( x e. R. /\ y e. R. ) /\ ( z e. R. /\ w e. R. ) ) -> ( ( y .R z ) +R ( x .R w ) ) e. R. ) |
| 19 | 13 18 | jca | |- ( ( ( x e. R. /\ y e. R. ) /\ ( z e. R. /\ w e. R. ) ) -> ( ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) e. R. /\ ( ( y .R z ) +R ( x .R w ) ) e. R. ) ) |
| 20 | mulclsr | |- ( ( z e. R. /\ v e. R. ) -> ( z .R v ) e. R. ) |
|
| 21 | mulclsr | |- ( ( w e. R. /\ u e. R. ) -> ( w .R u ) e. R. ) |
|
| 22 | mulclsr | |- ( ( -1R e. R. /\ ( w .R u ) e. R. ) -> ( -1R .R ( w .R u ) ) e. R. ) |
|
| 23 | 7 21 22 | sylancr | |- ( ( w e. R. /\ u e. R. ) -> ( -1R .R ( w .R u ) ) e. R. ) |
| 24 | addclsr | |- ( ( ( z .R v ) e. R. /\ ( -1R .R ( w .R u ) ) e. R. ) -> ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) e. R. ) |
|
| 25 | 20 23 24 | syl2an | |- ( ( ( z e. R. /\ v e. R. ) /\ ( w e. R. /\ u e. R. ) ) -> ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) e. R. ) |
| 26 | 25 | an4s | |- ( ( ( z e. R. /\ w e. R. ) /\ ( v e. R. /\ u e. R. ) ) -> ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) e. R. ) |
| 27 | mulclsr | |- ( ( w e. R. /\ v e. R. ) -> ( w .R v ) e. R. ) |
|
| 28 | mulclsr | |- ( ( z e. R. /\ u e. R. ) -> ( z .R u ) e. R. ) |
|
| 29 | addclsr | |- ( ( ( w .R v ) e. R. /\ ( z .R u ) e. R. ) -> ( ( w .R v ) +R ( z .R u ) ) e. R. ) |
|
| 30 | 27 28 29 | syl2anr | |- ( ( ( z e. R. /\ u e. R. ) /\ ( w e. R. /\ v e. R. ) ) -> ( ( w .R v ) +R ( z .R u ) ) e. R. ) |
| 31 | 30 | an42s | |- ( ( ( z e. R. /\ w e. R. ) /\ ( v e. R. /\ u e. R. ) ) -> ( ( w .R v ) +R ( z .R u ) ) e. R. ) |
| 32 | 26 31 | jca | |- ( ( ( z e. R. /\ w e. R. ) /\ ( v e. R. /\ u e. R. ) ) -> ( ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) e. R. /\ ( ( w .R v ) +R ( z .R u ) ) e. R. ) ) |
| 33 | ovex | |- ( x .R ( z .R v ) ) e. _V |
|
| 34 | ovex | |- ( x .R ( -1R .R ( w .R u ) ) ) e. _V |
|
| 35 | ovex | |- ( -1R .R ( y .R ( w .R v ) ) ) e. _V |
|
| 36 | addcomsr | |- ( f +R g ) = ( g +R f ) |
|
| 37 | addasssr | |- ( ( f +R g ) +R h ) = ( f +R ( g +R h ) ) |
|
| 38 | ovex | |- ( -1R .R ( y .R ( z .R u ) ) ) e. _V |
|
| 39 | 33 34 35 36 37 38 | caov42 | |- ( ( ( x .R ( z .R v ) ) +R ( x .R ( -1R .R ( w .R u ) ) ) ) +R ( ( -1R .R ( y .R ( w .R v ) ) ) +R ( -1R .R ( y .R ( z .R u ) ) ) ) ) = ( ( ( x .R ( z .R v ) ) +R ( -1R .R ( y .R ( w .R v ) ) ) ) +R ( ( -1R .R ( y .R ( z .R u ) ) ) +R ( x .R ( -1R .R ( w .R u ) ) ) ) ) |
| 40 | distrsr | |- ( x .R ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) ) = ( ( x .R ( z .R v ) ) +R ( x .R ( -1R .R ( w .R u ) ) ) ) |
|
| 41 | distrsr | |- ( y .R ( ( w .R v ) +R ( z .R u ) ) ) = ( ( y .R ( w .R v ) ) +R ( y .R ( z .R u ) ) ) |
|
| 42 | 41 | oveq2i | |- ( -1R .R ( y .R ( ( w .R v ) +R ( z .R u ) ) ) ) = ( -1R .R ( ( y .R ( w .R v ) ) +R ( y .R ( z .R u ) ) ) ) |
| 43 | distrsr | |- ( -1R .R ( ( y .R ( w .R v ) ) +R ( y .R ( z .R u ) ) ) ) = ( ( -1R .R ( y .R ( w .R v ) ) ) +R ( -1R .R ( y .R ( z .R u ) ) ) ) |
|
| 44 | 42 43 | eqtri | |- ( -1R .R ( y .R ( ( w .R v ) +R ( z .R u ) ) ) ) = ( ( -1R .R ( y .R ( w .R v ) ) ) +R ( -1R .R ( y .R ( z .R u ) ) ) ) |
| 45 | 40 44 | oveq12i | |- ( ( x .R ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) ) +R ( -1R .R ( y .R ( ( w .R v ) +R ( z .R u ) ) ) ) ) = ( ( ( x .R ( z .R v ) ) +R ( x .R ( -1R .R ( w .R u ) ) ) ) +R ( ( -1R .R ( y .R ( w .R v ) ) ) +R ( -1R .R ( y .R ( z .R u ) ) ) ) ) |
| 46 | vex | |- x e. _V |
|
| 47 | 7 | elexi | |- -1R e. _V |
| 48 | vex | |- z e. _V |
|
| 49 | mulcomsr | |- ( f .R g ) = ( g .R f ) |
|
| 50 | distrsr | |- ( f .R ( g +R h ) ) = ( ( f .R g ) +R ( f .R h ) ) |
|
| 51 | ovex | |- ( y .R w ) e. _V |
|
| 52 | vex | |- v e. _V |
|
| 53 | mulasssr | |- ( ( f .R g ) .R h ) = ( f .R ( g .R h ) ) |
|
| 54 | 46 47 48 49 50 51 52 53 | caovdilem | |- ( ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) .R v ) = ( ( x .R ( z .R v ) ) +R ( -1R .R ( ( y .R w ) .R v ) ) ) |
| 55 | mulasssr | |- ( ( y .R w ) .R v ) = ( y .R ( w .R v ) ) |
|
| 56 | 55 | oveq2i | |- ( -1R .R ( ( y .R w ) .R v ) ) = ( -1R .R ( y .R ( w .R v ) ) ) |
| 57 | 56 | oveq2i | |- ( ( x .R ( z .R v ) ) +R ( -1R .R ( ( y .R w ) .R v ) ) ) = ( ( x .R ( z .R v ) ) +R ( -1R .R ( y .R ( w .R v ) ) ) ) |
| 58 | 54 57 | eqtri | |- ( ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) .R v ) = ( ( x .R ( z .R v ) ) +R ( -1R .R ( y .R ( w .R v ) ) ) ) |
| 59 | vex | |- y e. _V |
|
| 60 | vex | |- w e. _V |
|
| 61 | vex | |- u e. _V |
|
| 62 | 59 46 48 49 50 60 61 53 | caovdilem | |- ( ( ( y .R z ) +R ( x .R w ) ) .R u ) = ( ( y .R ( z .R u ) ) +R ( x .R ( w .R u ) ) ) |
| 63 | 62 | oveq2i | |- ( -1R .R ( ( ( y .R z ) +R ( x .R w ) ) .R u ) ) = ( -1R .R ( ( y .R ( z .R u ) ) +R ( x .R ( w .R u ) ) ) ) |
| 64 | distrsr | |- ( -1R .R ( ( y .R ( z .R u ) ) +R ( x .R ( w .R u ) ) ) ) = ( ( -1R .R ( y .R ( z .R u ) ) ) +R ( -1R .R ( x .R ( w .R u ) ) ) ) |
|
| 65 | ovex | |- ( w .R u ) e. _V |
|
| 66 | 47 46 65 49 53 | caov12 | |- ( -1R .R ( x .R ( w .R u ) ) ) = ( x .R ( -1R .R ( w .R u ) ) ) |
| 67 | 66 | oveq2i | |- ( ( -1R .R ( y .R ( z .R u ) ) ) +R ( -1R .R ( x .R ( w .R u ) ) ) ) = ( ( -1R .R ( y .R ( z .R u ) ) ) +R ( x .R ( -1R .R ( w .R u ) ) ) ) |
| 68 | 64 67 | eqtri | |- ( -1R .R ( ( y .R ( z .R u ) ) +R ( x .R ( w .R u ) ) ) ) = ( ( -1R .R ( y .R ( z .R u ) ) ) +R ( x .R ( -1R .R ( w .R u ) ) ) ) |
| 69 | 63 68 | eqtri | |- ( -1R .R ( ( ( y .R z ) +R ( x .R w ) ) .R u ) ) = ( ( -1R .R ( y .R ( z .R u ) ) ) +R ( x .R ( -1R .R ( w .R u ) ) ) ) |
| 70 | 58 69 | oveq12i | |- ( ( ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) .R v ) +R ( -1R .R ( ( ( y .R z ) +R ( x .R w ) ) .R u ) ) ) = ( ( ( x .R ( z .R v ) ) +R ( -1R .R ( y .R ( w .R v ) ) ) ) +R ( ( -1R .R ( y .R ( z .R u ) ) ) +R ( x .R ( -1R .R ( w .R u ) ) ) ) ) |
| 71 | 39 45 70 | 3eqtr4ri | |- ( ( ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) .R v ) +R ( -1R .R ( ( ( y .R z ) +R ( x .R w ) ) .R u ) ) ) = ( ( x .R ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) ) +R ( -1R .R ( y .R ( ( w .R v ) +R ( z .R u ) ) ) ) ) |
| 72 | ovex | |- ( y .R ( z .R v ) ) e. _V |
|
| 73 | ovex | |- ( y .R ( -1R .R ( w .R u ) ) ) e. _V |
|
| 74 | ovex | |- ( x .R ( w .R v ) ) e. _V |
|
| 75 | ovex | |- ( x .R ( z .R u ) ) e. _V |
|
| 76 | 72 73 74 36 37 75 | caov42 | |- ( ( ( y .R ( z .R v ) ) +R ( y .R ( -1R .R ( w .R u ) ) ) ) +R ( ( x .R ( w .R v ) ) +R ( x .R ( z .R u ) ) ) ) = ( ( ( y .R ( z .R v ) ) +R ( x .R ( w .R v ) ) ) +R ( ( x .R ( z .R u ) ) +R ( y .R ( -1R .R ( w .R u ) ) ) ) ) |
| 77 | distrsr | |- ( y .R ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) ) = ( ( y .R ( z .R v ) ) +R ( y .R ( -1R .R ( w .R u ) ) ) ) |
|
| 78 | distrsr | |- ( x .R ( ( w .R v ) +R ( z .R u ) ) ) = ( ( x .R ( w .R v ) ) +R ( x .R ( z .R u ) ) ) |
|
| 79 | 77 78 | oveq12i | |- ( ( y .R ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) ) +R ( x .R ( ( w .R v ) +R ( z .R u ) ) ) ) = ( ( ( y .R ( z .R v ) ) +R ( y .R ( -1R .R ( w .R u ) ) ) ) +R ( ( x .R ( w .R v ) ) +R ( x .R ( z .R u ) ) ) ) |
| 80 | 59 46 48 49 50 60 52 53 | caovdilem | |- ( ( ( y .R z ) +R ( x .R w ) ) .R v ) = ( ( y .R ( z .R v ) ) +R ( x .R ( w .R v ) ) ) |
| 81 | 46 47 48 49 50 51 61 53 | caovdilem | |- ( ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) .R u ) = ( ( x .R ( z .R u ) ) +R ( -1R .R ( ( y .R w ) .R u ) ) ) |
| 82 | mulasssr | |- ( ( y .R w ) .R u ) = ( y .R ( w .R u ) ) |
|
| 83 | 82 | oveq2i | |- ( -1R .R ( ( y .R w ) .R u ) ) = ( -1R .R ( y .R ( w .R u ) ) ) |
| 84 | 47 59 65 49 53 | caov12 | |- ( -1R .R ( y .R ( w .R u ) ) ) = ( y .R ( -1R .R ( w .R u ) ) ) |
| 85 | 83 84 | eqtri | |- ( -1R .R ( ( y .R w ) .R u ) ) = ( y .R ( -1R .R ( w .R u ) ) ) |
| 86 | 85 | oveq2i | |- ( ( x .R ( z .R u ) ) +R ( -1R .R ( ( y .R w ) .R u ) ) ) = ( ( x .R ( z .R u ) ) +R ( y .R ( -1R .R ( w .R u ) ) ) ) |
| 87 | 81 86 | eqtri | |- ( ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) .R u ) = ( ( x .R ( z .R u ) ) +R ( y .R ( -1R .R ( w .R u ) ) ) ) |
| 88 | 80 87 | oveq12i | |- ( ( ( ( y .R z ) +R ( x .R w ) ) .R v ) +R ( ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) .R u ) ) = ( ( ( y .R ( z .R v ) ) +R ( x .R ( w .R v ) ) ) +R ( ( x .R ( z .R u ) ) +R ( y .R ( -1R .R ( w .R u ) ) ) ) ) |
| 89 | 76 79 88 | 3eqtr4ri | |- ( ( ( ( y .R z ) +R ( x .R w ) ) .R v ) +R ( ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) .R u ) ) = ( ( y .R ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) ) +R ( x .R ( ( w .R v ) +R ( z .R u ) ) ) ) |
| 90 | 1 2 3 4 5 19 32 71 89 | ecovass | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) x. C ) = ( A x. ( B x. C ) ) ) |