This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of complex numbers is associative. Axiom 10 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-mulass . (Contributed by NM, 3-Sep-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axmulass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcnqs | ⊢ ℂ = ( ( R × R ) / ◡ E ) | |
| 2 | mulcnsrec | ⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ◡ E · [ 〈 𝑧 , 𝑤 〉 ] ◡ E ) = [ 〈 ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) , ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) 〉 ] ◡ E ) | |
| 3 | mulcnsrec | ⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( [ 〈 𝑧 , 𝑤 〉 ] ◡ E · [ 〈 𝑣 , 𝑢 〉 ] ◡ E ) = [ 〈 ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) , ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) 〉 ] ◡ E ) | |
| 4 | mulcnsrec | ⊢ ( ( ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ∧ ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( [ 〈 ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) , ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) 〉 ] ◡ E · [ 〈 𝑣 , 𝑢 〉 ] ◡ E ) = [ 〈 ( ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑣 ) +R ( -1R ·R ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑢 ) ) ) , ( ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑣 ) +R ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑢 ) ) 〉 ] ◡ E ) | |
| 5 | mulcnsrec | ⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ∈ R ∧ ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ∈ R ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ◡ E · [ 〈 ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) , ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) 〉 ] ◡ E ) = [ 〈 ( ( 𝑥 ·R ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( -1R ·R ( 𝑦 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) ) ) , ( ( 𝑦 ·R ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( 𝑥 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) ) 〉 ] ◡ E ) | |
| 6 | mulclsr | ⊢ ( ( 𝑥 ∈ R ∧ 𝑧 ∈ R ) → ( 𝑥 ·R 𝑧 ) ∈ R ) | |
| 7 | m1r | ⊢ -1R ∈ R | |
| 8 | mulclsr | ⊢ ( ( 𝑦 ∈ R ∧ 𝑤 ∈ R ) → ( 𝑦 ·R 𝑤 ) ∈ R ) | |
| 9 | mulclsr | ⊢ ( ( -1R ∈ R ∧ ( 𝑦 ·R 𝑤 ) ∈ R ) → ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ∈ R ) | |
| 10 | 7 8 9 | sylancr | ⊢ ( ( 𝑦 ∈ R ∧ 𝑤 ∈ R ) → ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ∈ R ) |
| 11 | addclsr | ⊢ ( ( ( 𝑥 ·R 𝑧 ) ∈ R ∧ ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ∈ R ) → ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ) | |
| 12 | 6 10 11 | syl2an | ⊢ ( ( ( 𝑥 ∈ R ∧ 𝑧 ∈ R ) ∧ ( 𝑦 ∈ R ∧ 𝑤 ∈ R ) ) → ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ) |
| 13 | 12 | an4s | ⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ) |
| 14 | mulclsr | ⊢ ( ( 𝑦 ∈ R ∧ 𝑧 ∈ R ) → ( 𝑦 ·R 𝑧 ) ∈ R ) | |
| 15 | mulclsr | ⊢ ( ( 𝑥 ∈ R ∧ 𝑤 ∈ R ) → ( 𝑥 ·R 𝑤 ) ∈ R ) | |
| 16 | addclsr | ⊢ ( ( ( 𝑦 ·R 𝑧 ) ∈ R ∧ ( 𝑥 ·R 𝑤 ) ∈ R ) → ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) | |
| 17 | 14 15 16 | syl2anr | ⊢ ( ( ( 𝑥 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑦 ∈ R ∧ 𝑧 ∈ R ) ) → ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) |
| 18 | 17 | an42s | ⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) |
| 19 | 13 18 | jca | ⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ∧ ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) ) |
| 20 | mulclsr | ⊢ ( ( 𝑧 ∈ R ∧ 𝑣 ∈ R ) → ( 𝑧 ·R 𝑣 ) ∈ R ) | |
| 21 | mulclsr | ⊢ ( ( 𝑤 ∈ R ∧ 𝑢 ∈ R ) → ( 𝑤 ·R 𝑢 ) ∈ R ) | |
| 22 | mulclsr | ⊢ ( ( -1R ∈ R ∧ ( 𝑤 ·R 𝑢 ) ∈ R ) → ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ∈ R ) | |
| 23 | 7 21 22 | sylancr | ⊢ ( ( 𝑤 ∈ R ∧ 𝑢 ∈ R ) → ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ∈ R ) |
| 24 | addclsr | ⊢ ( ( ( 𝑧 ·R 𝑣 ) ∈ R ∧ ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ∈ R ) → ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ∈ R ) | |
| 25 | 20 23 24 | syl2an | ⊢ ( ( ( 𝑧 ∈ R ∧ 𝑣 ∈ R ) ∧ ( 𝑤 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ∈ R ) |
| 26 | 25 | an4s | ⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ∈ R ) |
| 27 | mulclsr | ⊢ ( ( 𝑤 ∈ R ∧ 𝑣 ∈ R ) → ( 𝑤 ·R 𝑣 ) ∈ R ) | |
| 28 | mulclsr | ⊢ ( ( 𝑧 ∈ R ∧ 𝑢 ∈ R ) → ( 𝑧 ·R 𝑢 ) ∈ R ) | |
| 29 | addclsr | ⊢ ( ( ( 𝑤 ·R 𝑣 ) ∈ R ∧ ( 𝑧 ·R 𝑢 ) ∈ R ) → ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ∈ R ) | |
| 30 | 27 28 29 | syl2anr | ⊢ ( ( ( 𝑧 ∈ R ∧ 𝑢 ∈ R ) ∧ ( 𝑤 ∈ R ∧ 𝑣 ∈ R ) ) → ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ∈ R ) |
| 31 | 30 | an42s | ⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ∈ R ) |
| 32 | 26 31 | jca | ⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ∈ R ∧ ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ∈ R ) ) |
| 33 | ovex | ⊢ ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) ∈ V | |
| 34 | ovex | ⊢ ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ∈ V | |
| 35 | ovex | ⊢ ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) ∈ V | |
| 36 | addcomsr | ⊢ ( 𝑓 +R 𝑔 ) = ( 𝑔 +R 𝑓 ) | |
| 37 | addasssr | ⊢ ( ( 𝑓 +R 𝑔 ) +R ℎ ) = ( 𝑓 +R ( 𝑔 +R ℎ ) ) | |
| 38 | ovex | ⊢ ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) ∈ V | |
| 39 | 33 34 35 36 37 38 | caov42 | ⊢ ( ( ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) +R ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) ) ) = ( ( ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) ) +R ( ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) +R ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) ) |
| 40 | distrsr | ⊢ ( 𝑥 ·R ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) = ( ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) +R ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) | |
| 41 | distrsr | ⊢ ( 𝑦 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) = ( ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) +R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) | |
| 42 | 41 | oveq2i | ⊢ ( -1R ·R ( 𝑦 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) ) = ( -1R ·R ( ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) +R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) ) |
| 43 | distrsr | ⊢ ( -1R ·R ( ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) +R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) ) = ( ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) ) | |
| 44 | 42 43 | eqtri | ⊢ ( -1R ·R ( 𝑦 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) ) = ( ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) ) |
| 45 | 40 44 | oveq12i | ⊢ ( ( 𝑥 ·R ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( -1R ·R ( 𝑦 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) ) ) = ( ( ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) +R ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) ) ) |
| 46 | vex | ⊢ 𝑥 ∈ V | |
| 47 | 7 | elexi | ⊢ -1R ∈ V |
| 48 | vex | ⊢ 𝑧 ∈ V | |
| 49 | mulcomsr | ⊢ ( 𝑓 ·R 𝑔 ) = ( 𝑔 ·R 𝑓 ) | |
| 50 | distrsr | ⊢ ( 𝑓 ·R ( 𝑔 +R ℎ ) ) = ( ( 𝑓 ·R 𝑔 ) +R ( 𝑓 ·R ℎ ) ) | |
| 51 | ovex | ⊢ ( 𝑦 ·R 𝑤 ) ∈ V | |
| 52 | vex | ⊢ 𝑣 ∈ V | |
| 53 | mulasssr | ⊢ ( ( 𝑓 ·R 𝑔 ) ·R ℎ ) = ( 𝑓 ·R ( 𝑔 ·R ℎ ) ) | |
| 54 | 46 47 48 49 50 51 52 53 | caovdilem | ⊢ ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑣 ) = ( ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) +R ( -1R ·R ( ( 𝑦 ·R 𝑤 ) ·R 𝑣 ) ) ) |
| 55 | mulasssr | ⊢ ( ( 𝑦 ·R 𝑤 ) ·R 𝑣 ) = ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) | |
| 56 | 55 | oveq2i | ⊢ ( -1R ·R ( ( 𝑦 ·R 𝑤 ) ·R 𝑣 ) ) = ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) |
| 57 | 56 | oveq2i | ⊢ ( ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) +R ( -1R ·R ( ( 𝑦 ·R 𝑤 ) ·R 𝑣 ) ) ) = ( ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) ) |
| 58 | 54 57 | eqtri | ⊢ ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑣 ) = ( ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) ) |
| 59 | vex | ⊢ 𝑦 ∈ V | |
| 60 | vex | ⊢ 𝑤 ∈ V | |
| 61 | vex | ⊢ 𝑢 ∈ V | |
| 62 | 59 46 48 49 50 60 61 53 | caovdilem | ⊢ ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑢 ) = ( ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) +R ( 𝑥 ·R ( 𝑤 ·R 𝑢 ) ) ) |
| 63 | 62 | oveq2i | ⊢ ( -1R ·R ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑢 ) ) = ( -1R ·R ( ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) +R ( 𝑥 ·R ( 𝑤 ·R 𝑢 ) ) ) ) |
| 64 | distrsr | ⊢ ( -1R ·R ( ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) +R ( 𝑥 ·R ( 𝑤 ·R 𝑢 ) ) ) ) = ( ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) +R ( -1R ·R ( 𝑥 ·R ( 𝑤 ·R 𝑢 ) ) ) ) | |
| 65 | ovex | ⊢ ( 𝑤 ·R 𝑢 ) ∈ V | |
| 66 | 47 46 65 49 53 | caov12 | ⊢ ( -1R ·R ( 𝑥 ·R ( 𝑤 ·R 𝑢 ) ) ) = ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) |
| 67 | 66 | oveq2i | ⊢ ( ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) +R ( -1R ·R ( 𝑥 ·R ( 𝑤 ·R 𝑢 ) ) ) ) = ( ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) +R ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) |
| 68 | 64 67 | eqtri | ⊢ ( -1R ·R ( ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) +R ( 𝑥 ·R ( 𝑤 ·R 𝑢 ) ) ) ) = ( ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) +R ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) |
| 69 | 63 68 | eqtri | ⊢ ( -1R ·R ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑢 ) ) = ( ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) +R ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) |
| 70 | 58 69 | oveq12i | ⊢ ( ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑣 ) +R ( -1R ·R ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑢 ) ) ) = ( ( ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) ) +R ( ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) +R ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) ) |
| 71 | 39 45 70 | 3eqtr4ri | ⊢ ( ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑣 ) +R ( -1R ·R ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑢 ) ) ) = ( ( 𝑥 ·R ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( -1R ·R ( 𝑦 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) ) ) |
| 72 | ovex | ⊢ ( 𝑦 ·R ( 𝑧 ·R 𝑣 ) ) ∈ V | |
| 73 | ovex | ⊢ ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ∈ V | |
| 74 | ovex | ⊢ ( 𝑥 ·R ( 𝑤 ·R 𝑣 ) ) ∈ V | |
| 75 | ovex | ⊢ ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) ∈ V | |
| 76 | 72 73 74 36 37 75 | caov42 | ⊢ ( ( ( 𝑦 ·R ( 𝑧 ·R 𝑣 ) ) +R ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( ( 𝑥 ·R ( 𝑤 ·R 𝑣 ) ) +R ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) ) ) = ( ( ( 𝑦 ·R ( 𝑧 ·R 𝑣 ) ) +R ( 𝑥 ·R ( 𝑤 ·R 𝑣 ) ) ) +R ( ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) +R ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) ) |
| 77 | distrsr | ⊢ ( 𝑦 ·R ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) = ( ( 𝑦 ·R ( 𝑧 ·R 𝑣 ) ) +R ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) | |
| 78 | distrsr | ⊢ ( 𝑥 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) = ( ( 𝑥 ·R ( 𝑤 ·R 𝑣 ) ) +R ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) ) | |
| 79 | 77 78 | oveq12i | ⊢ ( ( 𝑦 ·R ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( 𝑥 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) ) = ( ( ( 𝑦 ·R ( 𝑧 ·R 𝑣 ) ) +R ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( ( 𝑥 ·R ( 𝑤 ·R 𝑣 ) ) +R ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) ) ) |
| 80 | 59 46 48 49 50 60 52 53 | caovdilem | ⊢ ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑣 ) = ( ( 𝑦 ·R ( 𝑧 ·R 𝑣 ) ) +R ( 𝑥 ·R ( 𝑤 ·R 𝑣 ) ) ) |
| 81 | 46 47 48 49 50 51 61 53 | caovdilem | ⊢ ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑢 ) = ( ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) +R ( -1R ·R ( ( 𝑦 ·R 𝑤 ) ·R 𝑢 ) ) ) |
| 82 | mulasssr | ⊢ ( ( 𝑦 ·R 𝑤 ) ·R 𝑢 ) = ( 𝑦 ·R ( 𝑤 ·R 𝑢 ) ) | |
| 83 | 82 | oveq2i | ⊢ ( -1R ·R ( ( 𝑦 ·R 𝑤 ) ·R 𝑢 ) ) = ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑢 ) ) ) |
| 84 | 47 59 65 49 53 | caov12 | ⊢ ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑢 ) ) ) = ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) |
| 85 | 83 84 | eqtri | ⊢ ( -1R ·R ( ( 𝑦 ·R 𝑤 ) ·R 𝑢 ) ) = ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) |
| 86 | 85 | oveq2i | ⊢ ( ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) +R ( -1R ·R ( ( 𝑦 ·R 𝑤 ) ·R 𝑢 ) ) ) = ( ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) +R ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) |
| 87 | 81 86 | eqtri | ⊢ ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑢 ) = ( ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) +R ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) |
| 88 | 80 87 | oveq12i | ⊢ ( ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑣 ) +R ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑢 ) ) = ( ( ( 𝑦 ·R ( 𝑧 ·R 𝑣 ) ) +R ( 𝑥 ·R ( 𝑤 ·R 𝑣 ) ) ) +R ( ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) +R ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) ) |
| 89 | 76 79 88 | 3eqtr4ri | ⊢ ( ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑣 ) +R ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑢 ) ) = ( ( 𝑦 ·R ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( 𝑥 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) ) |
| 90 | 1 2 3 4 5 19 32 71 89 | ecovass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) ) |