This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used to transfer an associative law via an equivalence relation. (Contributed by NM, 31-Aug-1995) (Revised by David Abernethy, 4-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ecovass.1 | |- D = ( ( S X. S ) /. .~ ) |
|
| ecovass.2 | |- ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) ) -> ( [ <. x , y >. ] .~ .+ [ <. z , w >. ] .~ ) = [ <. G , H >. ] .~ ) |
||
| ecovass.3 | |- ( ( ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) -> ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) = [ <. N , Q >. ] .~ ) |
||
| ecovass.4 | |- ( ( ( G e. S /\ H e. S ) /\ ( v e. S /\ u e. S ) ) -> ( [ <. G , H >. ] .~ .+ [ <. v , u >. ] .~ ) = [ <. J , K >. ] .~ ) |
||
| ecovass.5 | |- ( ( ( x e. S /\ y e. S ) /\ ( N e. S /\ Q e. S ) ) -> ( [ <. x , y >. ] .~ .+ [ <. N , Q >. ] .~ ) = [ <. L , M >. ] .~ ) |
||
| ecovass.6 | |- ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) ) -> ( G e. S /\ H e. S ) ) |
||
| ecovass.7 | |- ( ( ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) -> ( N e. S /\ Q e. S ) ) |
||
| ecovass.8 | |- J = L |
||
| ecovass.9 | |- K = M |
||
| Assertion | ecovass | |- ( ( A e. D /\ B e. D /\ C e. D ) -> ( ( A .+ B ) .+ C ) = ( A .+ ( B .+ C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecovass.1 | |- D = ( ( S X. S ) /. .~ ) |
|
| 2 | ecovass.2 | |- ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) ) -> ( [ <. x , y >. ] .~ .+ [ <. z , w >. ] .~ ) = [ <. G , H >. ] .~ ) |
|
| 3 | ecovass.3 | |- ( ( ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) -> ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) = [ <. N , Q >. ] .~ ) |
|
| 4 | ecovass.4 | |- ( ( ( G e. S /\ H e. S ) /\ ( v e. S /\ u e. S ) ) -> ( [ <. G , H >. ] .~ .+ [ <. v , u >. ] .~ ) = [ <. J , K >. ] .~ ) |
|
| 5 | ecovass.5 | |- ( ( ( x e. S /\ y e. S ) /\ ( N e. S /\ Q e. S ) ) -> ( [ <. x , y >. ] .~ .+ [ <. N , Q >. ] .~ ) = [ <. L , M >. ] .~ ) |
|
| 6 | ecovass.6 | |- ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) ) -> ( G e. S /\ H e. S ) ) |
|
| 7 | ecovass.7 | |- ( ( ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) -> ( N e. S /\ Q e. S ) ) |
|
| 8 | ecovass.8 | |- J = L |
|
| 9 | ecovass.9 | |- K = M |
|
| 10 | oveq1 | |- ( [ <. x , y >. ] .~ = A -> ( [ <. x , y >. ] .~ .+ [ <. z , w >. ] .~ ) = ( A .+ [ <. z , w >. ] .~ ) ) |
|
| 11 | 10 | oveq1d | |- ( [ <. x , y >. ] .~ = A -> ( ( [ <. x , y >. ] .~ .+ [ <. z , w >. ] .~ ) .+ [ <. v , u >. ] .~ ) = ( ( A .+ [ <. z , w >. ] .~ ) .+ [ <. v , u >. ] .~ ) ) |
| 12 | oveq1 | |- ( [ <. x , y >. ] .~ = A -> ( [ <. x , y >. ] .~ .+ ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) = ( A .+ ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) ) |
|
| 13 | 11 12 | eqeq12d | |- ( [ <. x , y >. ] .~ = A -> ( ( ( [ <. x , y >. ] .~ .+ [ <. z , w >. ] .~ ) .+ [ <. v , u >. ] .~ ) = ( [ <. x , y >. ] .~ .+ ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) <-> ( ( A .+ [ <. z , w >. ] .~ ) .+ [ <. v , u >. ] .~ ) = ( A .+ ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) ) ) |
| 14 | oveq2 | |- ( [ <. z , w >. ] .~ = B -> ( A .+ [ <. z , w >. ] .~ ) = ( A .+ B ) ) |
|
| 15 | 14 | oveq1d | |- ( [ <. z , w >. ] .~ = B -> ( ( A .+ [ <. z , w >. ] .~ ) .+ [ <. v , u >. ] .~ ) = ( ( A .+ B ) .+ [ <. v , u >. ] .~ ) ) |
| 16 | oveq1 | |- ( [ <. z , w >. ] .~ = B -> ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) = ( B .+ [ <. v , u >. ] .~ ) ) |
|
| 17 | 16 | oveq2d | |- ( [ <. z , w >. ] .~ = B -> ( A .+ ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) = ( A .+ ( B .+ [ <. v , u >. ] .~ ) ) ) |
| 18 | 15 17 | eqeq12d | |- ( [ <. z , w >. ] .~ = B -> ( ( ( A .+ [ <. z , w >. ] .~ ) .+ [ <. v , u >. ] .~ ) = ( A .+ ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) <-> ( ( A .+ B ) .+ [ <. v , u >. ] .~ ) = ( A .+ ( B .+ [ <. v , u >. ] .~ ) ) ) ) |
| 19 | oveq2 | |- ( [ <. v , u >. ] .~ = C -> ( ( A .+ B ) .+ [ <. v , u >. ] .~ ) = ( ( A .+ B ) .+ C ) ) |
|
| 20 | oveq2 | |- ( [ <. v , u >. ] .~ = C -> ( B .+ [ <. v , u >. ] .~ ) = ( B .+ C ) ) |
|
| 21 | 20 | oveq2d | |- ( [ <. v , u >. ] .~ = C -> ( A .+ ( B .+ [ <. v , u >. ] .~ ) ) = ( A .+ ( B .+ C ) ) ) |
| 22 | 19 21 | eqeq12d | |- ( [ <. v , u >. ] .~ = C -> ( ( ( A .+ B ) .+ [ <. v , u >. ] .~ ) = ( A .+ ( B .+ [ <. v , u >. ] .~ ) ) <-> ( ( A .+ B ) .+ C ) = ( A .+ ( B .+ C ) ) ) ) |
| 23 | opeq12 | |- ( ( J = L /\ K = M ) -> <. J , K >. = <. L , M >. ) |
|
| 24 | 23 | eceq1d | |- ( ( J = L /\ K = M ) -> [ <. J , K >. ] .~ = [ <. L , M >. ] .~ ) |
| 25 | 8 9 24 | mp2an | |- [ <. J , K >. ] .~ = [ <. L , M >. ] .~ |
| 26 | 2 | oveq1d | |- ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) ) -> ( ( [ <. x , y >. ] .~ .+ [ <. z , w >. ] .~ ) .+ [ <. v , u >. ] .~ ) = ( [ <. G , H >. ] .~ .+ [ <. v , u >. ] .~ ) ) |
| 27 | 26 | adantr | |- ( ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) ) /\ ( v e. S /\ u e. S ) ) -> ( ( [ <. x , y >. ] .~ .+ [ <. z , w >. ] .~ ) .+ [ <. v , u >. ] .~ ) = ( [ <. G , H >. ] .~ .+ [ <. v , u >. ] .~ ) ) |
| 28 | 6 4 | sylan | |- ( ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) ) /\ ( v e. S /\ u e. S ) ) -> ( [ <. G , H >. ] .~ .+ [ <. v , u >. ] .~ ) = [ <. J , K >. ] .~ ) |
| 29 | 27 28 | eqtrd | |- ( ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) ) /\ ( v e. S /\ u e. S ) ) -> ( ( [ <. x , y >. ] .~ .+ [ <. z , w >. ] .~ ) .+ [ <. v , u >. ] .~ ) = [ <. J , K >. ] .~ ) |
| 30 | 29 | 3impa | |- ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) -> ( ( [ <. x , y >. ] .~ .+ [ <. z , w >. ] .~ ) .+ [ <. v , u >. ] .~ ) = [ <. J , K >. ] .~ ) |
| 31 | 3 | oveq2d | |- ( ( ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) -> ( [ <. x , y >. ] .~ .+ ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) = ( [ <. x , y >. ] .~ .+ [ <. N , Q >. ] .~ ) ) |
| 32 | 31 | adantl | |- ( ( ( x e. S /\ y e. S ) /\ ( ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) ) -> ( [ <. x , y >. ] .~ .+ ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) = ( [ <. x , y >. ] .~ .+ [ <. N , Q >. ] .~ ) ) |
| 33 | 7 5 | sylan2 | |- ( ( ( x e. S /\ y e. S ) /\ ( ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) ) -> ( [ <. x , y >. ] .~ .+ [ <. N , Q >. ] .~ ) = [ <. L , M >. ] .~ ) |
| 34 | 32 33 | eqtrd | |- ( ( ( x e. S /\ y e. S ) /\ ( ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) ) -> ( [ <. x , y >. ] .~ .+ ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) = [ <. L , M >. ] .~ ) |
| 35 | 34 | 3impb | |- ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) -> ( [ <. x , y >. ] .~ .+ ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) = [ <. L , M >. ] .~ ) |
| 36 | 25 30 35 | 3eqtr4a | |- ( ( ( x e. S /\ y e. S ) /\ ( z e. S /\ w e. S ) /\ ( v e. S /\ u e. S ) ) -> ( ( [ <. x , y >. ] .~ .+ [ <. z , w >. ] .~ ) .+ [ <. v , u >. ] .~ ) = ( [ <. x , y >. ] .~ .+ ( [ <. z , w >. ] .~ .+ [ <. v , u >. ] .~ ) ) ) |
| 37 | 1 13 18 22 36 | 3ecoptocl | |- ( ( A e. D /\ B e. D /\ C e. D ) -> ( ( A .+ B ) .+ C ) = ( A .+ ( B .+ C ) ) ) |