This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used by real number construction. (Contributed by NM, 26-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovdir.1 | |- A e. _V |
|
| caovdir.2 | |- B e. _V |
||
| caovdir.3 | |- C e. _V |
||
| caovdir.com | |- ( x G y ) = ( y G x ) |
||
| caovdir.distr | |- ( x G ( y F z ) ) = ( ( x G y ) F ( x G z ) ) |
||
| caovdl.4 | |- D e. _V |
||
| caovdl.5 | |- H e. _V |
||
| caovdl.ass | |- ( ( x G y ) G z ) = ( x G ( y G z ) ) |
||
| Assertion | caovdilem | |- ( ( ( A G C ) F ( B G D ) ) G H ) = ( ( A G ( C G H ) ) F ( B G ( D G H ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovdir.1 | |- A e. _V |
|
| 2 | caovdir.2 | |- B e. _V |
|
| 3 | caovdir.3 | |- C e. _V |
|
| 4 | caovdir.com | |- ( x G y ) = ( y G x ) |
|
| 5 | caovdir.distr | |- ( x G ( y F z ) ) = ( ( x G y ) F ( x G z ) ) |
|
| 6 | caovdl.4 | |- D e. _V |
|
| 7 | caovdl.5 | |- H e. _V |
|
| 8 | caovdl.ass | |- ( ( x G y ) G z ) = ( x G ( y G z ) ) |
|
| 9 | ovex | |- ( A G C ) e. _V |
|
| 10 | ovex | |- ( B G D ) e. _V |
|
| 11 | 9 10 7 4 5 | caovdir | |- ( ( ( A G C ) F ( B G D ) ) G H ) = ( ( ( A G C ) G H ) F ( ( B G D ) G H ) ) |
| 12 | 1 3 7 8 | caovass | |- ( ( A G C ) G H ) = ( A G ( C G H ) ) |
| 13 | 2 6 7 8 | caovass | |- ( ( B G D ) G H ) = ( B G ( D G H ) ) |
| 14 | 12 13 | oveq12i | |- ( ( ( A G C ) G H ) F ( ( B G D ) G H ) ) = ( ( A G ( C G H ) ) F ( B G ( D G H ) ) ) |
| 15 | 11 14 | eqtri | |- ( ( ( A G C ) F ( B G D ) ) G H ) = ( ( A G ( C G H ) ) F ( B G ( D G H ) ) ) |