This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of signed reals is distributive. (Contributed by NM, 2-Sep-1995) (Revised by Mario Carneiro, 28-Apr-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | distrsr | |- ( A .R ( B +R C ) ) = ( ( A .R B ) +R ( A .R C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr | |- R. = ( ( P. X. P. ) /. ~R ) |
|
| 2 | addsrpr | |- ( ( ( z e. P. /\ w e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( [ <. z , w >. ] ~R +R [ <. v , u >. ] ~R ) = [ <. ( z +P. v ) , ( w +P. u ) >. ] ~R ) |
|
| 3 | mulsrpr | |- ( ( ( x e. P. /\ y e. P. ) /\ ( ( z +P. v ) e. P. /\ ( w +P. u ) e. P. ) ) -> ( [ <. x , y >. ] ~R .R [ <. ( z +P. v ) , ( w +P. u ) >. ] ~R ) = [ <. ( ( x .P. ( z +P. v ) ) +P. ( y .P. ( w +P. u ) ) ) , ( ( x .P. ( w +P. u ) ) +P. ( y .P. ( z +P. v ) ) ) >. ] ~R ) |
|
| 4 | mulsrpr | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R .R [ <. z , w >. ] ~R ) = [ <. ( ( x .P. z ) +P. ( y .P. w ) ) , ( ( x .P. w ) +P. ( y .P. z ) ) >. ] ~R ) |
|
| 5 | mulsrpr | |- ( ( ( x e. P. /\ y e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( [ <. x , y >. ] ~R .R [ <. v , u >. ] ~R ) = [ <. ( ( x .P. v ) +P. ( y .P. u ) ) , ( ( x .P. u ) +P. ( y .P. v ) ) >. ] ~R ) |
|
| 6 | addsrpr | |- ( ( ( ( ( x .P. z ) +P. ( y .P. w ) ) e. P. /\ ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) /\ ( ( ( x .P. v ) +P. ( y .P. u ) ) e. P. /\ ( ( x .P. u ) +P. ( y .P. v ) ) e. P. ) ) -> ( [ <. ( ( x .P. z ) +P. ( y .P. w ) ) , ( ( x .P. w ) +P. ( y .P. z ) ) >. ] ~R +R [ <. ( ( x .P. v ) +P. ( y .P. u ) ) , ( ( x .P. u ) +P. ( y .P. v ) ) >. ] ~R ) = [ <. ( ( ( x .P. z ) +P. ( y .P. w ) ) +P. ( ( x .P. v ) +P. ( y .P. u ) ) ) , ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( ( x .P. u ) +P. ( y .P. v ) ) ) >. ] ~R ) |
|
| 7 | addclpr | |- ( ( z e. P. /\ v e. P. ) -> ( z +P. v ) e. P. ) |
|
| 8 | addclpr | |- ( ( w e. P. /\ u e. P. ) -> ( w +P. u ) e. P. ) |
|
| 9 | 7 8 | anim12i | |- ( ( ( z e. P. /\ v e. P. ) /\ ( w e. P. /\ u e. P. ) ) -> ( ( z +P. v ) e. P. /\ ( w +P. u ) e. P. ) ) |
| 10 | 9 | an4s | |- ( ( ( z e. P. /\ w e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( ( z +P. v ) e. P. /\ ( w +P. u ) e. P. ) ) |
| 11 | mulclpr | |- ( ( x e. P. /\ z e. P. ) -> ( x .P. z ) e. P. ) |
|
| 12 | mulclpr | |- ( ( y e. P. /\ w e. P. ) -> ( y .P. w ) e. P. ) |
|
| 13 | addclpr | |- ( ( ( x .P. z ) e. P. /\ ( y .P. w ) e. P. ) -> ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) |
|
| 14 | 11 12 13 | syl2an | |- ( ( ( x e. P. /\ z e. P. ) /\ ( y e. P. /\ w e. P. ) ) -> ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) |
| 15 | 14 | an4s | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) |
| 16 | mulclpr | |- ( ( x e. P. /\ w e. P. ) -> ( x .P. w ) e. P. ) |
|
| 17 | mulclpr | |- ( ( y e. P. /\ z e. P. ) -> ( y .P. z ) e. P. ) |
|
| 18 | addclpr | |- ( ( ( x .P. w ) e. P. /\ ( y .P. z ) e. P. ) -> ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) |
|
| 19 | 16 17 18 | syl2an | |- ( ( ( x e. P. /\ w e. P. ) /\ ( y e. P. /\ z e. P. ) ) -> ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) |
| 20 | 19 | an42s | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) |
| 21 | 15 20 | jca | |- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( ( x .P. z ) +P. ( y .P. w ) ) e. P. /\ ( ( x .P. w ) +P. ( y .P. z ) ) e. P. ) ) |
| 22 | mulclpr | |- ( ( x e. P. /\ v e. P. ) -> ( x .P. v ) e. P. ) |
|
| 23 | mulclpr | |- ( ( y e. P. /\ u e. P. ) -> ( y .P. u ) e. P. ) |
|
| 24 | addclpr | |- ( ( ( x .P. v ) e. P. /\ ( y .P. u ) e. P. ) -> ( ( x .P. v ) +P. ( y .P. u ) ) e. P. ) |
|
| 25 | 22 23 24 | syl2an | |- ( ( ( x e. P. /\ v e. P. ) /\ ( y e. P. /\ u e. P. ) ) -> ( ( x .P. v ) +P. ( y .P. u ) ) e. P. ) |
| 26 | 25 | an4s | |- ( ( ( x e. P. /\ y e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( ( x .P. v ) +P. ( y .P. u ) ) e. P. ) |
| 27 | mulclpr | |- ( ( x e. P. /\ u e. P. ) -> ( x .P. u ) e. P. ) |
|
| 28 | mulclpr | |- ( ( y e. P. /\ v e. P. ) -> ( y .P. v ) e. P. ) |
|
| 29 | addclpr | |- ( ( ( x .P. u ) e. P. /\ ( y .P. v ) e. P. ) -> ( ( x .P. u ) +P. ( y .P. v ) ) e. P. ) |
|
| 30 | 27 28 29 | syl2an | |- ( ( ( x e. P. /\ u e. P. ) /\ ( y e. P. /\ v e. P. ) ) -> ( ( x .P. u ) +P. ( y .P. v ) ) e. P. ) |
| 31 | 30 | an42s | |- ( ( ( x e. P. /\ y e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( ( x .P. u ) +P. ( y .P. v ) ) e. P. ) |
| 32 | 26 31 | jca | |- ( ( ( x e. P. /\ y e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( ( ( x .P. v ) +P. ( y .P. u ) ) e. P. /\ ( ( x .P. u ) +P. ( y .P. v ) ) e. P. ) ) |
| 33 | distrpr | |- ( x .P. ( z +P. v ) ) = ( ( x .P. z ) +P. ( x .P. v ) ) |
|
| 34 | distrpr | |- ( y .P. ( w +P. u ) ) = ( ( y .P. w ) +P. ( y .P. u ) ) |
|
| 35 | 33 34 | oveq12i | |- ( ( x .P. ( z +P. v ) ) +P. ( y .P. ( w +P. u ) ) ) = ( ( ( x .P. z ) +P. ( x .P. v ) ) +P. ( ( y .P. w ) +P. ( y .P. u ) ) ) |
| 36 | ovex | |- ( x .P. z ) e. _V |
|
| 37 | ovex | |- ( x .P. v ) e. _V |
|
| 38 | ovex | |- ( y .P. w ) e. _V |
|
| 39 | addcompr | |- ( f +P. g ) = ( g +P. f ) |
|
| 40 | addasspr | |- ( ( f +P. g ) +P. h ) = ( f +P. ( g +P. h ) ) |
|
| 41 | ovex | |- ( y .P. u ) e. _V |
|
| 42 | 36 37 38 39 40 41 | caov4 | |- ( ( ( x .P. z ) +P. ( x .P. v ) ) +P. ( ( y .P. w ) +P. ( y .P. u ) ) ) = ( ( ( x .P. z ) +P. ( y .P. w ) ) +P. ( ( x .P. v ) +P. ( y .P. u ) ) ) |
| 43 | 35 42 | eqtri | |- ( ( x .P. ( z +P. v ) ) +P. ( y .P. ( w +P. u ) ) ) = ( ( ( x .P. z ) +P. ( y .P. w ) ) +P. ( ( x .P. v ) +P. ( y .P. u ) ) ) |
| 44 | distrpr | |- ( x .P. ( w +P. u ) ) = ( ( x .P. w ) +P. ( x .P. u ) ) |
|
| 45 | distrpr | |- ( y .P. ( z +P. v ) ) = ( ( y .P. z ) +P. ( y .P. v ) ) |
|
| 46 | 44 45 | oveq12i | |- ( ( x .P. ( w +P. u ) ) +P. ( y .P. ( z +P. v ) ) ) = ( ( ( x .P. w ) +P. ( x .P. u ) ) +P. ( ( y .P. z ) +P. ( y .P. v ) ) ) |
| 47 | ovex | |- ( x .P. w ) e. _V |
|
| 48 | ovex | |- ( x .P. u ) e. _V |
|
| 49 | ovex | |- ( y .P. z ) e. _V |
|
| 50 | ovex | |- ( y .P. v ) e. _V |
|
| 51 | 47 48 49 39 40 50 | caov4 | |- ( ( ( x .P. w ) +P. ( x .P. u ) ) +P. ( ( y .P. z ) +P. ( y .P. v ) ) ) = ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( ( x .P. u ) +P. ( y .P. v ) ) ) |
| 52 | 46 51 | eqtri | |- ( ( x .P. ( w +P. u ) ) +P. ( y .P. ( z +P. v ) ) ) = ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( ( x .P. u ) +P. ( y .P. v ) ) ) |
| 53 | 1 2 3 4 5 6 10 21 32 43 52 | ecovdi | |- ( ( A e. R. /\ B e. R. /\ C e. R. ) -> ( A .R ( B +R C ) ) = ( ( A .R B ) +R ( A .R C ) ) ) |
| 54 | dmaddsr | |- dom +R = ( R. X. R. ) |
|
| 55 | 0nsr | |- -. (/) e. R. |
|
| 56 | dmmulsr | |- dom .R = ( R. X. R. ) |
|
| 57 | 54 55 56 | ndmovdistr | |- ( -. ( A e. R. /\ B e. R. /\ C e. R. ) -> ( A .R ( B +R C ) ) = ( ( A .R B ) +R ( A .R C ) ) ) |
| 58 | 53 57 | pm2.61i | |- ( A .R ( B +R C ) ) = ( ( A .R B ) +R ( A .R C ) ) |