This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Cartesian product of nonempty classes is nonempty. (Variation of a theorem contributed by Raph Levien, 30-Jun-2006.) (Contributed by NM, 30-Jun-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpnz | |- ( ( A =/= (/) /\ B =/= (/) ) <-> ( A X. B ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | |- ( A =/= (/) <-> E. x x e. A ) |
|
| 2 | n0 | |- ( B =/= (/) <-> E. y y e. B ) |
|
| 3 | 1 2 | anbi12i | |- ( ( A =/= (/) /\ B =/= (/) ) <-> ( E. x x e. A /\ E. y y e. B ) ) |
| 4 | exdistrv | |- ( E. x E. y ( x e. A /\ y e. B ) <-> ( E. x x e. A /\ E. y y e. B ) ) |
|
| 5 | 3 4 | bitr4i | |- ( ( A =/= (/) /\ B =/= (/) ) <-> E. x E. y ( x e. A /\ y e. B ) ) |
| 6 | opex | |- <. x , y >. e. _V |
|
| 7 | eleq1 | |- ( z = <. x , y >. -> ( z e. ( A X. B ) <-> <. x , y >. e. ( A X. B ) ) ) |
|
| 8 | opelxp | |- ( <. x , y >. e. ( A X. B ) <-> ( x e. A /\ y e. B ) ) |
|
| 9 | 7 8 | bitrdi | |- ( z = <. x , y >. -> ( z e. ( A X. B ) <-> ( x e. A /\ y e. B ) ) ) |
| 10 | 6 9 | spcev | |- ( ( x e. A /\ y e. B ) -> E. z z e. ( A X. B ) ) |
| 11 | n0 | |- ( ( A X. B ) =/= (/) <-> E. z z e. ( A X. B ) ) |
|
| 12 | 10 11 | sylibr | |- ( ( x e. A /\ y e. B ) -> ( A X. B ) =/= (/) ) |
| 13 | 12 | exlimivv | |- ( E. x E. y ( x e. A /\ y e. B ) -> ( A X. B ) =/= (/) ) |
| 14 | 5 13 | sylbi | |- ( ( A =/= (/) /\ B =/= (/) ) -> ( A X. B ) =/= (/) ) |
| 15 | xpeq1 | |- ( A = (/) -> ( A X. B ) = ( (/) X. B ) ) |
|
| 16 | 0xp | |- ( (/) X. B ) = (/) |
|
| 17 | 15 16 | eqtrdi | |- ( A = (/) -> ( A X. B ) = (/) ) |
| 18 | 17 | necon3i | |- ( ( A X. B ) =/= (/) -> A =/= (/) ) |
| 19 | xpeq2 | |- ( B = (/) -> ( A X. B ) = ( A X. (/) ) ) |
|
| 20 | xp0 | |- ( A X. (/) ) = (/) |
|
| 21 | 19 20 | eqtrdi | |- ( B = (/) -> ( A X. B ) = (/) ) |
| 22 | 21 | necon3i | |- ( ( A X. B ) =/= (/) -> B =/= (/) ) |
| 23 | 18 22 | jca | |- ( ( A X. B ) =/= (/) -> ( A =/= (/) /\ B =/= (/) ) ) |
| 24 | 14 23 | impbii | |- ( ( A =/= (/) /\ B =/= (/) ) <-> ( A X. B ) =/= (/) ) |