This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Axiom of Dependent Choice implies Infinity, the way we have stated it. Thus, we haveInf+AC impliesDC andDC impliesInf, but AC does not implyInf. (Contributed by Mario Carneiro, 25-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dcomex | |- _om e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1n0 | |- 1o =/= (/) |
|
| 2 | df-br | |- ( ( f ` n ) { <. 1o , 1o >. } ( f ` suc n ) <-> <. ( f ` n ) , ( f ` suc n ) >. e. { <. 1o , 1o >. } ) |
|
| 3 | elsni | |- ( <. ( f ` n ) , ( f ` suc n ) >. e. { <. 1o , 1o >. } -> <. ( f ` n ) , ( f ` suc n ) >. = <. 1o , 1o >. ) |
|
| 4 | fvex | |- ( f ` n ) e. _V |
|
| 5 | fvex | |- ( f ` suc n ) e. _V |
|
| 6 | 4 5 | opth1 | |- ( <. ( f ` n ) , ( f ` suc n ) >. = <. 1o , 1o >. -> ( f ` n ) = 1o ) |
| 7 | 3 6 | syl | |- ( <. ( f ` n ) , ( f ` suc n ) >. e. { <. 1o , 1o >. } -> ( f ` n ) = 1o ) |
| 8 | 2 7 | sylbi | |- ( ( f ` n ) { <. 1o , 1o >. } ( f ` suc n ) -> ( f ` n ) = 1o ) |
| 9 | tz6.12i | |- ( 1o =/= (/) -> ( ( f ` n ) = 1o -> n f 1o ) ) |
|
| 10 | 1 8 9 | mpsyl | |- ( ( f ` n ) { <. 1o , 1o >. } ( f ` suc n ) -> n f 1o ) |
| 11 | vex | |- n e. _V |
|
| 12 | 1oex | |- 1o e. _V |
|
| 13 | 11 12 | breldm | |- ( n f 1o -> n e. dom f ) |
| 14 | 10 13 | syl | |- ( ( f ` n ) { <. 1o , 1o >. } ( f ` suc n ) -> n e. dom f ) |
| 15 | 14 | ralimi | |- ( A. n e. _om ( f ` n ) { <. 1o , 1o >. } ( f ` suc n ) -> A. n e. _om n e. dom f ) |
| 16 | dfss3 | |- ( _om C_ dom f <-> A. n e. _om n e. dom f ) |
|
| 17 | 15 16 | sylibr | |- ( A. n e. _om ( f ` n ) { <. 1o , 1o >. } ( f ` suc n ) -> _om C_ dom f ) |
| 18 | vex | |- f e. _V |
|
| 19 | 18 | dmex | |- dom f e. _V |
| 20 | 19 | ssex | |- ( _om C_ dom f -> _om e. _V ) |
| 21 | 17 20 | syl | |- ( A. n e. _om ( f ` n ) { <. 1o , 1o >. } ( f ` suc n ) -> _om e. _V ) |
| 22 | snex | |- { <. 1o , 1o >. } e. _V |
|
| 23 | 12 12 | fvsn | |- ( { <. 1o , 1o >. } ` 1o ) = 1o |
| 24 | 12 12 | funsn | |- Fun { <. 1o , 1o >. } |
| 25 | 12 | snid | |- 1o e. { 1o } |
| 26 | 12 | dmsnop | |- dom { <. 1o , 1o >. } = { 1o } |
| 27 | 25 26 | eleqtrri | |- 1o e. dom { <. 1o , 1o >. } |
| 28 | funbrfvb | |- ( ( Fun { <. 1o , 1o >. } /\ 1o e. dom { <. 1o , 1o >. } ) -> ( ( { <. 1o , 1o >. } ` 1o ) = 1o <-> 1o { <. 1o , 1o >. } 1o ) ) |
|
| 29 | 24 27 28 | mp2an | |- ( ( { <. 1o , 1o >. } ` 1o ) = 1o <-> 1o { <. 1o , 1o >. } 1o ) |
| 30 | 23 29 | mpbi | |- 1o { <. 1o , 1o >. } 1o |
| 31 | breq12 | |- ( ( s = 1o /\ t = 1o ) -> ( s { <. 1o , 1o >. } t <-> 1o { <. 1o , 1o >. } 1o ) ) |
|
| 32 | 12 12 31 | spc2ev | |- ( 1o { <. 1o , 1o >. } 1o -> E. s E. t s { <. 1o , 1o >. } t ) |
| 33 | 30 32 | ax-mp | |- E. s E. t s { <. 1o , 1o >. } t |
| 34 | breq | |- ( x = { <. 1o , 1o >. } -> ( s x t <-> s { <. 1o , 1o >. } t ) ) |
|
| 35 | 34 | 2exbidv | |- ( x = { <. 1o , 1o >. } -> ( E. s E. t s x t <-> E. s E. t s { <. 1o , 1o >. } t ) ) |
| 36 | 33 35 | mpbiri | |- ( x = { <. 1o , 1o >. } -> E. s E. t s x t ) |
| 37 | ssid | |- { 1o } C_ { 1o } |
|
| 38 | 12 | rnsnop | |- ran { <. 1o , 1o >. } = { 1o } |
| 39 | 37 38 26 | 3sstr4i | |- ran { <. 1o , 1o >. } C_ dom { <. 1o , 1o >. } |
| 40 | rneq | |- ( x = { <. 1o , 1o >. } -> ran x = ran { <. 1o , 1o >. } ) |
|
| 41 | dmeq | |- ( x = { <. 1o , 1o >. } -> dom x = dom { <. 1o , 1o >. } ) |
|
| 42 | 40 41 | sseq12d | |- ( x = { <. 1o , 1o >. } -> ( ran x C_ dom x <-> ran { <. 1o , 1o >. } C_ dom { <. 1o , 1o >. } ) ) |
| 43 | 39 42 | mpbiri | |- ( x = { <. 1o , 1o >. } -> ran x C_ dom x ) |
| 44 | pm5.5 | |- ( ( E. s E. t s x t /\ ran x C_ dom x ) -> ( ( ( E. s E. t s x t /\ ran x C_ dom x ) -> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) <-> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) ) |
|
| 45 | 36 43 44 | syl2anc | |- ( x = { <. 1o , 1o >. } -> ( ( ( E. s E. t s x t /\ ran x C_ dom x ) -> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) <-> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) ) |
| 46 | breq | |- ( x = { <. 1o , 1o >. } -> ( ( f ` n ) x ( f ` suc n ) <-> ( f ` n ) { <. 1o , 1o >. } ( f ` suc n ) ) ) |
|
| 47 | 46 | ralbidv | |- ( x = { <. 1o , 1o >. } -> ( A. n e. _om ( f ` n ) x ( f ` suc n ) <-> A. n e. _om ( f ` n ) { <. 1o , 1o >. } ( f ` suc n ) ) ) |
| 48 | 47 | exbidv | |- ( x = { <. 1o , 1o >. } -> ( E. f A. n e. _om ( f ` n ) x ( f ` suc n ) <-> E. f A. n e. _om ( f ` n ) { <. 1o , 1o >. } ( f ` suc n ) ) ) |
| 49 | 45 48 | bitrd | |- ( x = { <. 1o , 1o >. } -> ( ( ( E. s E. t s x t /\ ran x C_ dom x ) -> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) <-> E. f A. n e. _om ( f ` n ) { <. 1o , 1o >. } ( f ` suc n ) ) ) |
| 50 | ax-dc | |- ( ( E. s E. t s x t /\ ran x C_ dom x ) -> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) |
|
| 51 | 22 49 50 | vtocl | |- E. f A. n e. _om ( f ` n ) { <. 1o , 1o >. } ( f ` suc n ) |
| 52 | 21 51 | exlimiiv | |- _om e. _V |