This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dependent Choice. Axiom DC1 of Schechter p. 149, with the addition of an initial value C . This theorem is weaker than the Axiom of Choice but is stronger than Countable Choice. It shows the existence of a sequence whose values can only be shown to exist (but cannot be constructed explicitly) and also depend on earlier values in the sequence. (Contributed by Mario Carneiro, 27-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | axdc3.1 | |- A e. _V |
|
| Assertion | axdc3 | |- ( ( C e. A /\ F : A --> ( ~P A \ { (/) } ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( F ` ( g ` k ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axdc3.1 | |- A e. _V |
|
| 2 | feq1 | |- ( t = s -> ( t : suc n --> A <-> s : suc n --> A ) ) |
|
| 3 | fveq1 | |- ( t = s -> ( t ` (/) ) = ( s ` (/) ) ) |
|
| 4 | 3 | eqeq1d | |- ( t = s -> ( ( t ` (/) ) = C <-> ( s ` (/) ) = C ) ) |
| 5 | fveq1 | |- ( t = s -> ( t ` suc j ) = ( s ` suc j ) ) |
|
| 6 | fveq1 | |- ( t = s -> ( t ` j ) = ( s ` j ) ) |
|
| 7 | 6 | fveq2d | |- ( t = s -> ( F ` ( t ` j ) ) = ( F ` ( s ` j ) ) ) |
| 8 | 5 7 | eleq12d | |- ( t = s -> ( ( t ` suc j ) e. ( F ` ( t ` j ) ) <-> ( s ` suc j ) e. ( F ` ( s ` j ) ) ) ) |
| 9 | 8 | ralbidv | |- ( t = s -> ( A. j e. n ( t ` suc j ) e. ( F ` ( t ` j ) ) <-> A. j e. n ( s ` suc j ) e. ( F ` ( s ` j ) ) ) ) |
| 10 | suceq | |- ( j = k -> suc j = suc k ) |
|
| 11 | 10 | fveq2d | |- ( j = k -> ( s ` suc j ) = ( s ` suc k ) ) |
| 12 | 2fveq3 | |- ( j = k -> ( F ` ( s ` j ) ) = ( F ` ( s ` k ) ) ) |
|
| 13 | 11 12 | eleq12d | |- ( j = k -> ( ( s ` suc j ) e. ( F ` ( s ` j ) ) <-> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) |
| 14 | 13 | cbvralvw | |- ( A. j e. n ( s ` suc j ) e. ( F ` ( s ` j ) ) <-> A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) |
| 15 | 9 14 | bitrdi | |- ( t = s -> ( A. j e. n ( t ` suc j ) e. ( F ` ( t ` j ) ) <-> A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) |
| 16 | 2 4 15 | 3anbi123d | |- ( t = s -> ( ( t : suc n --> A /\ ( t ` (/) ) = C /\ A. j e. n ( t ` suc j ) e. ( F ` ( t ` j ) ) ) <-> ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) ) |
| 17 | 16 | rexbidv | |- ( t = s -> ( E. n e. _om ( t : suc n --> A /\ ( t ` (/) ) = C /\ A. j e. n ( t ` suc j ) e. ( F ` ( t ` j ) ) ) <-> E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) ) |
| 18 | 17 | cbvabv | |- { t | E. n e. _om ( t : suc n --> A /\ ( t ` (/) ) = C /\ A. j e. n ( t ` suc j ) e. ( F ` ( t ` j ) ) ) } = { s | E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } |
| 19 | eqid | |- ( x e. { t | E. n e. _om ( t : suc n --> A /\ ( t ` (/) ) = C /\ A. j e. n ( t ` suc j ) e. ( F ` ( t ` j ) ) ) } |-> { y e. { t | E. n e. _om ( t : suc n --> A /\ ( t ` (/) ) = C /\ A. j e. n ( t ` suc j ) e. ( F ` ( t ` j ) ) ) } | ( dom y = suc dom x /\ ( y |` dom x ) = x ) } ) = ( x e. { t | E. n e. _om ( t : suc n --> A /\ ( t ` (/) ) = C /\ A. j e. n ( t ` suc j ) e. ( F ` ( t ` j ) ) ) } |-> { y e. { t | E. n e. _om ( t : suc n --> A /\ ( t ` (/) ) = C /\ A. j e. n ( t ` suc j ) e. ( F ` ( t ` j ) ) ) } | ( dom y = suc dom x /\ ( y |` dom x ) = x ) } ) |
|
| 20 | 1 18 19 | axdc3lem4 | |- ( ( C e. A /\ F : A --> ( ~P A \ { (/) } ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( F ` ( g ` k ) ) ) ) |