This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class S of finite approximations to the DC sequence is a set. (We derive here the stronger statement that S is a subset of a specific set, namely ~P ( _om X. A ) .) (Contributed by Mario Carneiro, 27-Jan-2013) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 18-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | axdc3lem.1 | |- A e. _V |
|
| axdc3lem.2 | |- S = { s | E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } |
||
| Assertion | axdc3lem | |- S e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axdc3lem.1 | |- A e. _V |
|
| 2 | axdc3lem.2 | |- S = { s | E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } |
|
| 3 | dcomex | |- _om e. _V |
|
| 4 | 3 1 | xpex | |- ( _om X. A ) e. _V |
| 5 | 4 | pwex | |- ~P ( _om X. A ) e. _V |
| 6 | fssxp | |- ( s : suc n --> A -> s C_ ( suc n X. A ) ) |
|
| 7 | peano2 | |- ( n e. _om -> suc n e. _om ) |
|
| 8 | omelon2 | |- ( _om e. _V -> _om e. On ) |
|
| 9 | 3 8 | ax-mp | |- _om e. On |
| 10 | 9 | onelssi | |- ( suc n e. _om -> suc n C_ _om ) |
| 11 | xpss1 | |- ( suc n C_ _om -> ( suc n X. A ) C_ ( _om X. A ) ) |
|
| 12 | 7 10 11 | 3syl | |- ( n e. _om -> ( suc n X. A ) C_ ( _om X. A ) ) |
| 13 | 6 12 | sylan9ss | |- ( ( s : suc n --> A /\ n e. _om ) -> s C_ ( _om X. A ) ) |
| 14 | velpw | |- ( s e. ~P ( _om X. A ) <-> s C_ ( _om X. A ) ) |
|
| 15 | 13 14 | sylibr | |- ( ( s : suc n --> A /\ n e. _om ) -> s e. ~P ( _om X. A ) ) |
| 16 | 15 | ancoms | |- ( ( n e. _om /\ s : suc n --> A ) -> s e. ~P ( _om X. A ) ) |
| 17 | 16 | 3ad2antr1 | |- ( ( n e. _om /\ ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) -> s e. ~P ( _om X. A ) ) |
| 18 | 17 | rexlimiva | |- ( E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) -> s e. ~P ( _om X. A ) ) |
| 19 | 18 | abssi | |- { s | E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } C_ ~P ( _om X. A ) |
| 20 | 2 19 | eqsstri | |- S C_ ~P ( _om X. A ) |
| 21 | 5 20 | ssexi | |- S e. _V |