This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of the negative of a complex number. (Contributed by Eric Schmidt, 21-May-2007) (Revised by Scott Fenton, 3-Jan-2013) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnegex | |- ( A e. CC -> E. x e. CC ( A + x ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre | |- ( A e. CC -> E. a e. RR E. b e. RR A = ( a + ( _i x. b ) ) ) |
|
| 2 | ax-rnegex | |- ( a e. RR -> E. c e. RR ( a + c ) = 0 ) |
|
| 3 | ax-rnegex | |- ( b e. RR -> E. d e. RR ( b + d ) = 0 ) |
|
| 4 | 2 3 | anim12i | |- ( ( a e. RR /\ b e. RR ) -> ( E. c e. RR ( a + c ) = 0 /\ E. d e. RR ( b + d ) = 0 ) ) |
| 5 | reeanv | |- ( E. c e. RR E. d e. RR ( ( a + c ) = 0 /\ ( b + d ) = 0 ) <-> ( E. c e. RR ( a + c ) = 0 /\ E. d e. RR ( b + d ) = 0 ) ) |
|
| 6 | 4 5 | sylibr | |- ( ( a e. RR /\ b e. RR ) -> E. c e. RR E. d e. RR ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) |
| 7 | ax-icn | |- _i e. CC |
|
| 8 | 7 | a1i | |- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> _i e. CC ) |
| 9 | simplrr | |- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> d e. RR ) |
|
| 10 | 9 | recnd | |- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> d e. CC ) |
| 11 | 8 10 | mulcld | |- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( _i x. d ) e. CC ) |
| 12 | simplrl | |- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> c e. RR ) |
|
| 13 | 12 | recnd | |- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> c e. CC ) |
| 14 | 11 13 | addcld | |- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( ( _i x. d ) + c ) e. CC ) |
| 15 | simplll | |- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> a e. RR ) |
|
| 16 | 15 | recnd | |- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> a e. CC ) |
| 17 | simpllr | |- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> b e. RR ) |
|
| 18 | 17 | recnd | |- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> b e. CC ) |
| 19 | 8 18 | mulcld | |- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( _i x. b ) e. CC ) |
| 20 | 16 19 11 | addassd | |- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( ( a + ( _i x. b ) ) + ( _i x. d ) ) = ( a + ( ( _i x. b ) + ( _i x. d ) ) ) ) |
| 21 | 8 18 10 | adddid | |- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( _i x. ( b + d ) ) = ( ( _i x. b ) + ( _i x. d ) ) ) |
| 22 | simprr | |- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( b + d ) = 0 ) |
|
| 23 | 22 | oveq2d | |- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( _i x. ( b + d ) ) = ( _i x. 0 ) ) |
| 24 | mul01 | |- ( _i e. CC -> ( _i x. 0 ) = 0 ) |
|
| 25 | 7 24 | ax-mp | |- ( _i x. 0 ) = 0 |
| 26 | 23 25 | eqtrdi | |- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( _i x. ( b + d ) ) = 0 ) |
| 27 | 21 26 | eqtr3d | |- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( ( _i x. b ) + ( _i x. d ) ) = 0 ) |
| 28 | 27 | oveq2d | |- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( a + ( ( _i x. b ) + ( _i x. d ) ) ) = ( a + 0 ) ) |
| 29 | addrid | |- ( a e. CC -> ( a + 0 ) = a ) |
|
| 30 | 16 29 | syl | |- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( a + 0 ) = a ) |
| 31 | 20 28 30 | 3eqtrd | |- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( ( a + ( _i x. b ) ) + ( _i x. d ) ) = a ) |
| 32 | 31 | oveq1d | |- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( ( ( a + ( _i x. b ) ) + ( _i x. d ) ) + c ) = ( a + c ) ) |
| 33 | 16 19 | addcld | |- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( a + ( _i x. b ) ) e. CC ) |
| 34 | 33 11 13 | addassd | |- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( ( ( a + ( _i x. b ) ) + ( _i x. d ) ) + c ) = ( ( a + ( _i x. b ) ) + ( ( _i x. d ) + c ) ) ) |
| 35 | 32 34 | eqtr3d | |- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( a + c ) = ( ( a + ( _i x. b ) ) + ( ( _i x. d ) + c ) ) ) |
| 36 | simprl | |- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( a + c ) = 0 ) |
|
| 37 | 35 36 | eqtr3d | |- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> ( ( a + ( _i x. b ) ) + ( ( _i x. d ) + c ) ) = 0 ) |
| 38 | oveq2 | |- ( x = ( ( _i x. d ) + c ) -> ( ( a + ( _i x. b ) ) + x ) = ( ( a + ( _i x. b ) ) + ( ( _i x. d ) + c ) ) ) |
|
| 39 | 38 | eqeq1d | |- ( x = ( ( _i x. d ) + c ) -> ( ( ( a + ( _i x. b ) ) + x ) = 0 <-> ( ( a + ( _i x. b ) ) + ( ( _i x. d ) + c ) ) = 0 ) ) |
| 40 | 39 | rspcev | |- ( ( ( ( _i x. d ) + c ) e. CC /\ ( ( a + ( _i x. b ) ) + ( ( _i x. d ) + c ) ) = 0 ) -> E. x e. CC ( ( a + ( _i x. b ) ) + x ) = 0 ) |
| 41 | 14 37 40 | syl2anc | |- ( ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) /\ ( ( a + c ) = 0 /\ ( b + d ) = 0 ) ) -> E. x e. CC ( ( a + ( _i x. b ) ) + x ) = 0 ) |
| 42 | 41 | ex | |- ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) -> ( ( ( a + c ) = 0 /\ ( b + d ) = 0 ) -> E. x e. CC ( ( a + ( _i x. b ) ) + x ) = 0 ) ) |
| 43 | 42 | rexlimdvva | |- ( ( a e. RR /\ b e. RR ) -> ( E. c e. RR E. d e. RR ( ( a + c ) = 0 /\ ( b + d ) = 0 ) -> E. x e. CC ( ( a + ( _i x. b ) ) + x ) = 0 ) ) |
| 44 | 6 43 | mpd | |- ( ( a e. RR /\ b e. RR ) -> E. x e. CC ( ( a + ( _i x. b ) ) + x ) = 0 ) |
| 45 | oveq1 | |- ( A = ( a + ( _i x. b ) ) -> ( A + x ) = ( ( a + ( _i x. b ) ) + x ) ) |
|
| 46 | 45 | eqeq1d | |- ( A = ( a + ( _i x. b ) ) -> ( ( A + x ) = 0 <-> ( ( a + ( _i x. b ) ) + x ) = 0 ) ) |
| 47 | 46 | rexbidv | |- ( A = ( a + ( _i x. b ) ) -> ( E. x e. CC ( A + x ) = 0 <-> E. x e. CC ( ( a + ( _i x. b ) ) + x ) = 0 ) ) |
| 48 | 44 47 | syl5ibrcom | |- ( ( a e. RR /\ b e. RR ) -> ( A = ( a + ( _i x. b ) ) -> E. x e. CC ( A + x ) = 0 ) ) |
| 49 | 48 | rexlimivv | |- ( E. a e. RR E. b e. RR A = ( a + ( _i x. b ) ) -> E. x e. CC ( A + x ) = 0 ) |
| 50 | 1 49 | syl | |- ( A e. CC -> E. x e. CC ( A + x ) = 0 ) |