This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law. (Contributed by Scott Fenton, 3-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mul31 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) x. C ) = ( ( C x. B ) x. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcom | |- ( ( B e. CC /\ C e. CC ) -> ( B x. C ) = ( C x. B ) ) |
|
| 2 | 1 | oveq2d | |- ( ( B e. CC /\ C e. CC ) -> ( A x. ( B x. C ) ) = ( A x. ( C x. B ) ) ) |
| 3 | 2 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. ( B x. C ) ) = ( A x. ( C x. B ) ) ) |
| 4 | mulass | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) x. C ) = ( A x. ( B x. C ) ) ) |
|
| 5 | mulcl | |- ( ( C e. CC /\ B e. CC ) -> ( C x. B ) e. CC ) |
|
| 6 | 5 | ancoms | |- ( ( B e. CC /\ C e. CC ) -> ( C x. B ) e. CC ) |
| 7 | 6 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( C x. B ) e. CC ) |
| 8 | simp1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> A e. CC ) |
|
| 9 | 7 8 | mulcomd | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( C x. B ) x. A ) = ( A x. ( C x. B ) ) ) |
| 10 | 3 4 9 | 3eqtr4d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) x. C ) = ( ( C x. B ) x. A ) ) |