This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem addrid

Description: 0 is an additive identity. This used to be one of our complex number axioms, until it was found to be dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion addrid A A + 0 = A

Proof

Step Hyp Ref Expression
1 1re 1
2 ax-rnegex 1 c 1 + c = 0
3 ax-1ne0 1 0
4 oveq2 c = 0 1 + c = 1 + 0
5 4 eqeq1d c = 0 1 + c = 0 1 + 0 = 0
6 5 biimpcd 1 + c = 0 c = 0 1 + 0 = 0
7 oveq2 1 + 0 = 0 i i i i 1 + 0 = i i i i 0
8 ax-icn i
9 8 8 mulcli i i
10 9 9 mulcli i i i i
11 ax-1cn 1
12 0cn 0
13 10 11 12 adddii i i i i 1 + 0 = i i i i 1 + i i i i 0
14 10 mulridi i i i i 1 = i i i i
15 mul01 i i i i i i i i 0 = 0
16 10 15 ax-mp i i i i 0 = 0
17 ax-i2m1 i i + 1 = 0
18 16 17 eqtr4i i i i i 0 = i i + 1
19 14 18 oveq12i i i i i 1 + i i i i 0 = i i i i + i i + 1
20 13 19 eqtri i i i i 1 + 0 = i i i i + i i + 1
21 20 16 eqeq12i i i i i 1 + 0 = i i i i 0 i i i i + i i + 1 = 0
22 10 9 11 addassi i i i i + i i + 1 = i i i i + i i + 1
23 9 mulridi i i 1 = i i
24 23 oveq2i i i i i + i i 1 = i i i i + i i
25 9 9 11 adddii i i i i + 1 = i i i i + i i 1
26 17 oveq2i i i i i + 1 = i i 0
27 mul01 i i i i 0 = 0
28 9 27 ax-mp i i 0 = 0
29 26 28 eqtri i i i i + 1 = 0
30 25 29 eqtr3i i i i i + i i 1 = 0
31 24 30 eqtr3i i i i i + i i = 0
32 31 oveq1i i i i i + i i + 1 = 0 + 1
33 22 32 eqtr3i i i i i + i i + 1 = 0 + 1
34 00id 0 + 0 = 0
35 34 eqcomi 0 = 0 + 0
36 33 35 eqeq12i i i i i + i i + 1 = 0 0 + 1 = 0 + 0
37 0re 0
38 readdcan 1 0 0 0 + 1 = 0 + 0 1 = 0
39 1 37 37 38 mp3an 0 + 1 = 0 + 0 1 = 0
40 21 36 39 3bitri i i i i 1 + 0 = i i i i 0 1 = 0
41 7 40 sylib 1 + 0 = 0 1 = 0
42 6 41 syl6 1 + c = 0 c = 0 1 = 0
43 42 necon3d 1 + c = 0 1 0 c 0
44 3 43 mpi 1 + c = 0 c 0
45 ax-rrecex c c 0 x c x = 1
46 44 45 sylan2 c 1 + c = 0 x c x = 1
47 simpr c 1 + c = 0 x c x = 1 A A
48 simplrl c 1 + c = 0 x c x = 1 A x
49 48 recnd c 1 + c = 0 x c x = 1 A x
50 47 49 mulcld c 1 + c = 0 x c x = 1 A A x
51 simplll c 1 + c = 0 x c x = 1 A c
52 51 recnd c 1 + c = 0 x c x = 1 A c
53 12 a1i c 1 + c = 0 x c x = 1 A 0
54 50 52 53 adddid c 1 + c = 0 x c x = 1 A A x c + 0 = A x c + A x 0
55 11 a1i c 1 + c = 0 x c x = 1 A 1
56 55 52 53 addassd c 1 + c = 0 x c x = 1 A 1 + c + 0 = 1 + c + 0
57 simpllr c 1 + c = 0 x c x = 1 A 1 + c = 0
58 57 oveq1d c 1 + c = 0 x c x = 1 A 1 + c + 0 = 0 + 0
59 56 58 eqtr3d c 1 + c = 0 x c x = 1 A 1 + c + 0 = 0 + 0
60 34 59 57 3eqtr4a c 1 + c = 0 x c x = 1 A 1 + c + 0 = 1 + c
61 37 a1i c 1 + c = 0 x c x = 1 A 0
62 51 61 readdcld c 1 + c = 0 x c x = 1 A c + 0
63 1 a1i c 1 + c = 0 x c x = 1 A 1
64 readdcan c + 0 c 1 1 + c + 0 = 1 + c c + 0 = c
65 62 51 63 64 syl3anc c 1 + c = 0 x c x = 1 A 1 + c + 0 = 1 + c c + 0 = c
66 60 65 mpbid c 1 + c = 0 x c x = 1 A c + 0 = c
67 66 oveq2d c 1 + c = 0 x c x = 1 A A x c + 0 = A x c
68 54 67 eqtr3d c 1 + c = 0 x c x = 1 A A x c + A x 0 = A x c
69 mul31 A x c A x c = c x A
70 47 49 52 69 syl3anc c 1 + c = 0 x c x = 1 A A x c = c x A
71 simplrr c 1 + c = 0 x c x = 1 A c x = 1
72 71 oveq1d c 1 + c = 0 x c x = 1 A c x A = 1 A
73 47 mullidd c 1 + c = 0 x c x = 1 A 1 A = A
74 70 72 73 3eqtrd c 1 + c = 0 x c x = 1 A A x c = A
75 mul01 A x A x 0 = 0
76 50 75 syl c 1 + c = 0 x c x = 1 A A x 0 = 0
77 74 76 oveq12d c 1 + c = 0 x c x = 1 A A x c + A x 0 = A + 0
78 68 77 74 3eqtr3d c 1 + c = 0 x c x = 1 A A + 0 = A
79 78 exp42 c 1 + c = 0 x c x = 1 A A + 0 = A
80 79 rexlimdv c 1 + c = 0 x c x = 1 A A + 0 = A
81 46 80 mpd c 1 + c = 0 A A + 0 = A
82 81 rexlimiva c 1 + c = 0 A A + 0 = A
83 1 2 82 mp2b A A + 0 = A