This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for addition over the reals. (Contributed by Scott Fenton, 3-Jan-2013) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | readdcan | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C + A ) = ( C + B ) <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltadd2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B <-> ( C + A ) < ( C + B ) ) ) |
|
| 2 | 1 | notbid | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -. A < B <-> -. ( C + A ) < ( C + B ) ) ) |
| 3 | simp2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
|
| 4 | simp1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
|
| 5 | simp3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
|
| 6 | 3 4 5 | ltadd2d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B < A <-> ( C + B ) < ( C + A ) ) ) |
| 7 | 6 | notbid | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -. B < A <-> -. ( C + B ) < ( C + A ) ) ) |
| 8 | 2 7 | anbi12d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( -. A < B /\ -. B < A ) <-> ( -. ( C + A ) < ( C + B ) /\ -. ( C + B ) < ( C + A ) ) ) ) |
| 9 | 4 3 | lttri3d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A = B <-> ( -. A < B /\ -. B < A ) ) ) |
| 10 | 5 4 | readdcld | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C + A ) e. RR ) |
| 11 | 5 3 | readdcld | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C + B ) e. RR ) |
| 12 | 10 11 | lttri3d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C + A ) = ( C + B ) <-> ( -. ( C + A ) < ( C + B ) /\ -. ( C + B ) < ( C + A ) ) ) ) |
| 13 | 8 9 12 | 3bitr4rd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C + A ) = ( C + B ) <-> A = B ) ) |