This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arctangent function is an inverse to tan . (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tanatan | |- ( A e. dom arctan -> ( tan ` ( arctan ` A ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atancl | |- ( A e. dom arctan -> ( arctan ` A ) e. CC ) |
|
| 2 | 2efiatan | |- ( A e. dom arctan -> ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) ) |
|
| 3 | 2 | oveq1d | |- ( A e. dom arctan -> ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) = ( ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) + 1 ) ) |
| 4 | 2mulicn | |- ( 2 x. _i ) e. CC |
|
| 5 | 4 | a1i | |- ( A e. dom arctan -> ( 2 x. _i ) e. CC ) |
| 6 | atandm | |- ( A e. dom arctan <-> ( A e. CC /\ A =/= -u _i /\ A =/= _i ) ) |
|
| 7 | 6 | simp1bi | |- ( A e. dom arctan -> A e. CC ) |
| 8 | ax-icn | |- _i e. CC |
|
| 9 | addcl | |- ( ( A e. CC /\ _i e. CC ) -> ( A + _i ) e. CC ) |
|
| 10 | 7 8 9 | sylancl | |- ( A e. dom arctan -> ( A + _i ) e. CC ) |
| 11 | subneg | |- ( ( A e. CC /\ _i e. CC ) -> ( A - -u _i ) = ( A + _i ) ) |
|
| 12 | 7 8 11 | sylancl | |- ( A e. dom arctan -> ( A - -u _i ) = ( A + _i ) ) |
| 13 | 6 | simp2bi | |- ( A e. dom arctan -> A =/= -u _i ) |
| 14 | 8 | negcli | |- -u _i e. CC |
| 15 | subeq0 | |- ( ( A e. CC /\ -u _i e. CC ) -> ( ( A - -u _i ) = 0 <-> A = -u _i ) ) |
|
| 16 | 15 | necon3bid | |- ( ( A e. CC /\ -u _i e. CC ) -> ( ( A - -u _i ) =/= 0 <-> A =/= -u _i ) ) |
| 17 | 7 14 16 | sylancl | |- ( A e. dom arctan -> ( ( A - -u _i ) =/= 0 <-> A =/= -u _i ) ) |
| 18 | 13 17 | mpbird | |- ( A e. dom arctan -> ( A - -u _i ) =/= 0 ) |
| 19 | 12 18 | eqnetrrd | |- ( A e. dom arctan -> ( A + _i ) =/= 0 ) |
| 20 | 5 10 19 | divcld | |- ( A e. dom arctan -> ( ( 2 x. _i ) / ( A + _i ) ) e. CC ) |
| 21 | ax-1cn | |- 1 e. CC |
|
| 22 | npcan | |- ( ( ( ( 2 x. _i ) / ( A + _i ) ) e. CC /\ 1 e. CC ) -> ( ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) + 1 ) = ( ( 2 x. _i ) / ( A + _i ) ) ) |
|
| 23 | 20 21 22 | sylancl | |- ( A e. dom arctan -> ( ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) + 1 ) = ( ( 2 x. _i ) / ( A + _i ) ) ) |
| 24 | 3 23 | eqtrd | |- ( A e. dom arctan -> ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) = ( ( 2 x. _i ) / ( A + _i ) ) ) |
| 25 | 2muline0 | |- ( 2 x. _i ) =/= 0 |
|
| 26 | 25 | a1i | |- ( A e. dom arctan -> ( 2 x. _i ) =/= 0 ) |
| 27 | 5 10 26 19 | divne0d | |- ( A e. dom arctan -> ( ( 2 x. _i ) / ( A + _i ) ) =/= 0 ) |
| 28 | 24 27 | eqnetrd | |- ( A e. dom arctan -> ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) =/= 0 ) |
| 29 | tanval3 | |- ( ( ( arctan ` A ) e. CC /\ ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) =/= 0 ) -> ( tan ` ( arctan ` A ) ) = ( ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) - 1 ) / ( _i x. ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) ) ) ) |
|
| 30 | 1 28 29 | syl2anc | |- ( A e. dom arctan -> ( tan ` ( arctan ` A ) ) = ( ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) - 1 ) / ( _i x. ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) ) ) ) |
| 31 | 2 | oveq1d | |- ( A e. dom arctan -> ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) - 1 ) = ( ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) - 1 ) ) |
| 32 | 21 | a1i | |- ( A e. dom arctan -> 1 e. CC ) |
| 33 | 20 32 32 | subsub4d | |- ( A e. dom arctan -> ( ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) - 1 ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - ( 1 + 1 ) ) ) |
| 34 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 35 | 34 | oveq2i | |- ( ( ( 2 x. _i ) / ( A + _i ) ) - 2 ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - ( 1 + 1 ) ) |
| 36 | 33 35 | eqtr4di | |- ( A e. dom arctan -> ( ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) - 1 ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - 2 ) ) |
| 37 | 31 36 | eqtrd | |- ( A e. dom arctan -> ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) - 1 ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - 2 ) ) |
| 38 | 2cn | |- 2 e. CC |
|
| 39 | mulcl | |- ( ( 2 e. CC /\ ( A + _i ) e. CC ) -> ( 2 x. ( A + _i ) ) e. CC ) |
|
| 40 | 38 10 39 | sylancr | |- ( A e. dom arctan -> ( 2 x. ( A + _i ) ) e. CC ) |
| 41 | 5 40 10 19 | divsubdird | |- ( A e. dom arctan -> ( ( ( 2 x. _i ) - ( 2 x. ( A + _i ) ) ) / ( A + _i ) ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - ( ( 2 x. ( A + _i ) ) / ( A + _i ) ) ) ) |
| 42 | mulneg12 | |- ( ( 2 e. CC /\ A e. CC ) -> ( -u 2 x. A ) = ( 2 x. -u A ) ) |
|
| 43 | 38 7 42 | sylancr | |- ( A e. dom arctan -> ( -u 2 x. A ) = ( 2 x. -u A ) ) |
| 44 | negsub | |- ( ( _i e. CC /\ A e. CC ) -> ( _i + -u A ) = ( _i - A ) ) |
|
| 45 | 8 7 44 | sylancr | |- ( A e. dom arctan -> ( _i + -u A ) = ( _i - A ) ) |
| 46 | 45 | oveq1d | |- ( A e. dom arctan -> ( ( _i + -u A ) - _i ) = ( ( _i - A ) - _i ) ) |
| 47 | 7 | negcld | |- ( A e. dom arctan -> -u A e. CC ) |
| 48 | pncan2 | |- ( ( _i e. CC /\ -u A e. CC ) -> ( ( _i + -u A ) - _i ) = -u A ) |
|
| 49 | 8 47 48 | sylancr | |- ( A e. dom arctan -> ( ( _i + -u A ) - _i ) = -u A ) |
| 50 | 8 | a1i | |- ( A e. dom arctan -> _i e. CC ) |
| 51 | 50 7 50 | subsub4d | |- ( A e. dom arctan -> ( ( _i - A ) - _i ) = ( _i - ( A + _i ) ) ) |
| 52 | 46 49 51 | 3eqtr3rd | |- ( A e. dom arctan -> ( _i - ( A + _i ) ) = -u A ) |
| 53 | 52 | oveq2d | |- ( A e. dom arctan -> ( 2 x. ( _i - ( A + _i ) ) ) = ( 2 x. -u A ) ) |
| 54 | 38 | a1i | |- ( A e. dom arctan -> 2 e. CC ) |
| 55 | 54 50 10 | subdid | |- ( A e. dom arctan -> ( 2 x. ( _i - ( A + _i ) ) ) = ( ( 2 x. _i ) - ( 2 x. ( A + _i ) ) ) ) |
| 56 | 43 53 55 | 3eqtr2rd | |- ( A e. dom arctan -> ( ( 2 x. _i ) - ( 2 x. ( A + _i ) ) ) = ( -u 2 x. A ) ) |
| 57 | 56 | oveq1d | |- ( A e. dom arctan -> ( ( ( 2 x. _i ) - ( 2 x. ( A + _i ) ) ) / ( A + _i ) ) = ( ( -u 2 x. A ) / ( A + _i ) ) ) |
| 58 | 54 10 19 | divcan4d | |- ( A e. dom arctan -> ( ( 2 x. ( A + _i ) ) / ( A + _i ) ) = 2 ) |
| 59 | 58 | oveq2d | |- ( A e. dom arctan -> ( ( ( 2 x. _i ) / ( A + _i ) ) - ( ( 2 x. ( A + _i ) ) / ( A + _i ) ) ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - 2 ) ) |
| 60 | 41 57 59 | 3eqtr3d | |- ( A e. dom arctan -> ( ( -u 2 x. A ) / ( A + _i ) ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - 2 ) ) |
| 61 | 37 60 | eqtr4d | |- ( A e. dom arctan -> ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) - 1 ) = ( ( -u 2 x. A ) / ( A + _i ) ) ) |
| 62 | 24 | oveq2d | |- ( A e. dom arctan -> ( _i x. ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) ) = ( _i x. ( ( 2 x. _i ) / ( A + _i ) ) ) ) |
| 63 | 8 38 8 | mul12i | |- ( _i x. ( 2 x. _i ) ) = ( 2 x. ( _i x. _i ) ) |
| 64 | ixi | |- ( _i x. _i ) = -u 1 |
|
| 65 | 64 | oveq2i | |- ( 2 x. ( _i x. _i ) ) = ( 2 x. -u 1 ) |
| 66 | 21 | negcli | |- -u 1 e. CC |
| 67 | 38 | mulm1i | |- ( -u 1 x. 2 ) = -u 2 |
| 68 | 66 38 67 | mulcomli | |- ( 2 x. -u 1 ) = -u 2 |
| 69 | 63 65 68 | 3eqtri | |- ( _i x. ( 2 x. _i ) ) = -u 2 |
| 70 | 69 | oveq1i | |- ( ( _i x. ( 2 x. _i ) ) / ( A + _i ) ) = ( -u 2 / ( A + _i ) ) |
| 71 | 50 5 10 19 | divassd | |- ( A e. dom arctan -> ( ( _i x. ( 2 x. _i ) ) / ( A + _i ) ) = ( _i x. ( ( 2 x. _i ) / ( A + _i ) ) ) ) |
| 72 | 70 71 | eqtr3id | |- ( A e. dom arctan -> ( -u 2 / ( A + _i ) ) = ( _i x. ( ( 2 x. _i ) / ( A + _i ) ) ) ) |
| 73 | 62 72 | eqtr4d | |- ( A e. dom arctan -> ( _i x. ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) ) = ( -u 2 / ( A + _i ) ) ) |
| 74 | 61 73 | oveq12d | |- ( A e. dom arctan -> ( ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) - 1 ) / ( _i x. ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) ) ) = ( ( ( -u 2 x. A ) / ( A + _i ) ) / ( -u 2 / ( A + _i ) ) ) ) |
| 75 | 38 | negcli | |- -u 2 e. CC |
| 76 | mulcl | |- ( ( -u 2 e. CC /\ A e. CC ) -> ( -u 2 x. A ) e. CC ) |
|
| 77 | 75 7 76 | sylancr | |- ( A e. dom arctan -> ( -u 2 x. A ) e. CC ) |
| 78 | 75 | a1i | |- ( A e. dom arctan -> -u 2 e. CC ) |
| 79 | 2ne0 | |- 2 =/= 0 |
|
| 80 | 38 79 | negne0i | |- -u 2 =/= 0 |
| 81 | 80 | a1i | |- ( A e. dom arctan -> -u 2 =/= 0 ) |
| 82 | 77 78 10 81 19 | divcan7d | |- ( A e. dom arctan -> ( ( ( -u 2 x. A ) / ( A + _i ) ) / ( -u 2 / ( A + _i ) ) ) = ( ( -u 2 x. A ) / -u 2 ) ) |
| 83 | 7 78 81 | divcan3d | |- ( A e. dom arctan -> ( ( -u 2 x. A ) / -u 2 ) = A ) |
| 84 | 82 83 | eqtrd | |- ( A e. dom arctan -> ( ( ( -u 2 x. A ) / ( A + _i ) ) / ( -u 2 / ( A + _i ) ) ) = A ) |
| 85 | 74 84 | eqtrd | |- ( A e. dom arctan -> ( ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) - 1 ) / ( _i x. ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) ) ) = A ) |
| 86 | 30 85 | eqtrd | |- ( A e. dom arctan -> ( tan ` ( arctan ` A ) ) = A ) |