This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2efiatan | ⊢ ( 𝐴 ∈ dom arctan → ( exp ‘ ( 2 · ( i · ( arctan ‘ 𝐴 ) ) ) ) = ( ( ( 2 · i ) / ( 𝐴 + i ) ) − 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atanval | ⊢ ( 𝐴 ∈ dom arctan → ( arctan ‘ 𝐴 ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) | |
| 2 | 1 | oveq2d | ⊢ ( 𝐴 ∈ dom arctan → ( ( 2 · i ) · ( arctan ‘ 𝐴 ) ) = ( ( 2 · i ) · ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) ) |
| 3 | 2cn | ⊢ 2 ∈ ℂ | |
| 4 | 3 | a1i | ⊢ ( 𝐴 ∈ dom arctan → 2 ∈ ℂ ) |
| 5 | ax-icn | ⊢ i ∈ ℂ | |
| 6 | 5 | a1i | ⊢ ( 𝐴 ∈ dom arctan → i ∈ ℂ ) |
| 7 | atancl | ⊢ ( 𝐴 ∈ dom arctan → ( arctan ‘ 𝐴 ) ∈ ℂ ) | |
| 8 | 4 6 7 | mulassd | ⊢ ( 𝐴 ∈ dom arctan → ( ( 2 · i ) · ( arctan ‘ 𝐴 ) ) = ( 2 · ( i · ( arctan ‘ 𝐴 ) ) ) ) |
| 9 | halfcl | ⊢ ( i ∈ ℂ → ( i / 2 ) ∈ ℂ ) | |
| 10 | 5 9 | ax-mp | ⊢ ( i / 2 ) ∈ ℂ |
| 11 | 3 5 10 | mulassi | ⊢ ( ( 2 · i ) · ( i / 2 ) ) = ( 2 · ( i · ( i / 2 ) ) ) |
| 12 | 3 5 10 | mul12i | ⊢ ( 2 · ( i · ( i / 2 ) ) ) = ( i · ( 2 · ( i / 2 ) ) ) |
| 13 | 2ne0 | ⊢ 2 ≠ 0 | |
| 14 | 5 3 13 | divcan2i | ⊢ ( 2 · ( i / 2 ) ) = i |
| 15 | 14 | oveq2i | ⊢ ( i · ( 2 · ( i / 2 ) ) ) = ( i · i ) |
| 16 | ixi | ⊢ ( i · i ) = - 1 | |
| 17 | 15 16 | eqtri | ⊢ ( i · ( 2 · ( i / 2 ) ) ) = - 1 |
| 18 | 11 12 17 | 3eqtri | ⊢ ( ( 2 · i ) · ( i / 2 ) ) = - 1 |
| 19 | 18 | oveq1i | ⊢ ( ( ( 2 · i ) · ( i / 2 ) ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) = ( - 1 · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) |
| 20 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 21 | atandm2 | ⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ) | |
| 22 | 21 | simp1bi | ⊢ ( 𝐴 ∈ dom arctan → 𝐴 ∈ ℂ ) |
| 23 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 24 | 5 22 23 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( i · 𝐴 ) ∈ ℂ ) |
| 25 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 − ( i · 𝐴 ) ) ∈ ℂ ) | |
| 26 | 20 24 25 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( 1 − ( i · 𝐴 ) ) ∈ ℂ ) |
| 27 | 21 | simp2bi | ⊢ ( 𝐴 ∈ dom arctan → ( 1 − ( i · 𝐴 ) ) ≠ 0 ) |
| 28 | 26 27 | logcld | ⊢ ( 𝐴 ∈ dom arctan → ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ∈ ℂ ) |
| 29 | addcl | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) | |
| 30 | 20 24 29 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) |
| 31 | 21 | simp3bi | ⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( i · 𝐴 ) ) ≠ 0 ) |
| 32 | 30 31 | logcld | ⊢ ( 𝐴 ∈ dom arctan → ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ∈ ℂ ) |
| 33 | 28 32 | subcld | ⊢ ( 𝐴 ∈ dom arctan → ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ∈ ℂ ) |
| 34 | 33 | mulm1d | ⊢ ( 𝐴 ∈ dom arctan → ( - 1 · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) = - ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) |
| 35 | 19 34 | eqtrid | ⊢ ( 𝐴 ∈ dom arctan → ( ( ( 2 · i ) · ( i / 2 ) ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) = - ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) |
| 36 | 2mulicn | ⊢ ( 2 · i ) ∈ ℂ | |
| 37 | 36 | a1i | ⊢ ( 𝐴 ∈ dom arctan → ( 2 · i ) ∈ ℂ ) |
| 38 | 10 | a1i | ⊢ ( 𝐴 ∈ dom arctan → ( i / 2 ) ∈ ℂ ) |
| 39 | 37 38 33 | mulassd | ⊢ ( 𝐴 ∈ dom arctan → ( ( ( 2 · i ) · ( i / 2 ) ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) = ( ( 2 · i ) · ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) ) |
| 40 | 28 32 | negsubdi2d | ⊢ ( 𝐴 ∈ dom arctan → - ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) = ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) − ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) |
| 41 | 35 39 40 | 3eqtr3d | ⊢ ( 𝐴 ∈ dom arctan → ( ( 2 · i ) · ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) − ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) ) = ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) − ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) |
| 42 | 2 8 41 | 3eqtr3d | ⊢ ( 𝐴 ∈ dom arctan → ( 2 · ( i · ( arctan ‘ 𝐴 ) ) ) = ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) − ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) |
| 43 | 42 | fveq2d | ⊢ ( 𝐴 ∈ dom arctan → ( exp ‘ ( 2 · ( i · ( arctan ‘ 𝐴 ) ) ) ) = ( exp ‘ ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) − ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) ) |
| 44 | efsub | ⊢ ( ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ∈ ℂ ∧ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ∈ ℂ ) → ( exp ‘ ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) − ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) = ( ( exp ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) / ( exp ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) ) | |
| 45 | 32 28 44 | syl2anc | ⊢ ( 𝐴 ∈ dom arctan → ( exp ‘ ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) − ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) = ( ( exp ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) / ( exp ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) ) |
| 46 | eflog | ⊢ ( ( ( 1 + ( i · 𝐴 ) ) ∈ ℂ ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) → ( exp ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) = ( 1 + ( i · 𝐴 ) ) ) | |
| 47 | 30 31 46 | syl2anc | ⊢ ( 𝐴 ∈ dom arctan → ( exp ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) = ( 1 + ( i · 𝐴 ) ) ) |
| 48 | eflog | ⊢ ( ( ( 1 − ( i · 𝐴 ) ) ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ≠ 0 ) → ( exp ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) = ( 1 − ( i · 𝐴 ) ) ) | |
| 49 | 26 27 48 | syl2anc | ⊢ ( 𝐴 ∈ dom arctan → ( exp ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) = ( 1 − ( i · 𝐴 ) ) ) |
| 50 | 47 49 | oveq12d | ⊢ ( 𝐴 ∈ dom arctan → ( ( exp ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) / ( exp ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) = ( ( 1 + ( i · 𝐴 ) ) / ( 1 − ( i · 𝐴 ) ) ) ) |
| 51 | negsub | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i + - 𝐴 ) = ( i − 𝐴 ) ) | |
| 52 | 5 22 51 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( i + - 𝐴 ) = ( i − 𝐴 ) ) |
| 53 | 6 | mulridd | ⊢ ( 𝐴 ∈ dom arctan → ( i · 1 ) = i ) |
| 54 | 16 | oveq1i | ⊢ ( ( i · i ) · 𝐴 ) = ( - 1 · 𝐴 ) |
| 55 | 6 6 22 | mulassd | ⊢ ( 𝐴 ∈ dom arctan → ( ( i · i ) · 𝐴 ) = ( i · ( i · 𝐴 ) ) ) |
| 56 | 22 | mulm1d | ⊢ ( 𝐴 ∈ dom arctan → ( - 1 · 𝐴 ) = - 𝐴 ) |
| 57 | 54 55 56 | 3eqtr3a | ⊢ ( 𝐴 ∈ dom arctan → ( i · ( i · 𝐴 ) ) = - 𝐴 ) |
| 58 | 53 57 | oveq12d | ⊢ ( 𝐴 ∈ dom arctan → ( ( i · 1 ) + ( i · ( i · 𝐴 ) ) ) = ( i + - 𝐴 ) ) |
| 59 | 6 22 6 | pnpcan2d | ⊢ ( 𝐴 ∈ dom arctan → ( ( i + i ) − ( 𝐴 + i ) ) = ( i − 𝐴 ) ) |
| 60 | 52 58 59 | 3eqtr4d | ⊢ ( 𝐴 ∈ dom arctan → ( ( i · 1 ) + ( i · ( i · 𝐴 ) ) ) = ( ( i + i ) − ( 𝐴 + i ) ) ) |
| 61 | 20 | a1i | ⊢ ( 𝐴 ∈ dom arctan → 1 ∈ ℂ ) |
| 62 | 6 61 24 | adddid | ⊢ ( 𝐴 ∈ dom arctan → ( i · ( 1 + ( i · 𝐴 ) ) ) = ( ( i · 1 ) + ( i · ( i · 𝐴 ) ) ) ) |
| 63 | 6 | 2timesd | ⊢ ( 𝐴 ∈ dom arctan → ( 2 · i ) = ( i + i ) ) |
| 64 | 63 | oveq1d | ⊢ ( 𝐴 ∈ dom arctan → ( ( 2 · i ) − ( 𝐴 + i ) ) = ( ( i + i ) − ( 𝐴 + i ) ) ) |
| 65 | 60 62 64 | 3eqtr4d | ⊢ ( 𝐴 ∈ dom arctan → ( i · ( 1 + ( i · 𝐴 ) ) ) = ( ( 2 · i ) − ( 𝐴 + i ) ) ) |
| 66 | 6 61 24 | subdid | ⊢ ( 𝐴 ∈ dom arctan → ( i · ( 1 − ( i · 𝐴 ) ) ) = ( ( i · 1 ) − ( i · ( i · 𝐴 ) ) ) ) |
| 67 | 53 57 | oveq12d | ⊢ ( 𝐴 ∈ dom arctan → ( ( i · 1 ) − ( i · ( i · 𝐴 ) ) ) = ( i − - 𝐴 ) ) |
| 68 | subneg | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i − - 𝐴 ) = ( i + 𝐴 ) ) | |
| 69 | 5 22 68 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( i − - 𝐴 ) = ( i + 𝐴 ) ) |
| 70 | 67 69 | eqtrd | ⊢ ( 𝐴 ∈ dom arctan → ( ( i · 1 ) − ( i · ( i · 𝐴 ) ) ) = ( i + 𝐴 ) ) |
| 71 | addcom | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i + 𝐴 ) = ( 𝐴 + i ) ) | |
| 72 | 5 22 71 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( i + 𝐴 ) = ( 𝐴 + i ) ) |
| 73 | 66 70 72 | 3eqtrd | ⊢ ( 𝐴 ∈ dom arctan → ( i · ( 1 − ( i · 𝐴 ) ) ) = ( 𝐴 + i ) ) |
| 74 | 65 73 | oveq12d | ⊢ ( 𝐴 ∈ dom arctan → ( ( i · ( 1 + ( i · 𝐴 ) ) ) / ( i · ( 1 − ( i · 𝐴 ) ) ) ) = ( ( ( 2 · i ) − ( 𝐴 + i ) ) / ( 𝐴 + i ) ) ) |
| 75 | ine0 | ⊢ i ≠ 0 | |
| 76 | 75 | a1i | ⊢ ( 𝐴 ∈ dom arctan → i ≠ 0 ) |
| 77 | 30 26 6 27 76 | divcan5d | ⊢ ( 𝐴 ∈ dom arctan → ( ( i · ( 1 + ( i · 𝐴 ) ) ) / ( i · ( 1 − ( i · 𝐴 ) ) ) ) = ( ( 1 + ( i · 𝐴 ) ) / ( 1 − ( i · 𝐴 ) ) ) ) |
| 78 | addcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ i ∈ ℂ ) → ( 𝐴 + i ) ∈ ℂ ) | |
| 79 | 22 5 78 | sylancl | ⊢ ( 𝐴 ∈ dom arctan → ( 𝐴 + i ) ∈ ℂ ) |
| 80 | subneg | ⊢ ( ( 𝐴 ∈ ℂ ∧ i ∈ ℂ ) → ( 𝐴 − - i ) = ( 𝐴 + i ) ) | |
| 81 | 22 5 80 | sylancl | ⊢ ( 𝐴 ∈ dom arctan → ( 𝐴 − - i ) = ( 𝐴 + i ) ) |
| 82 | atandm | ⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) | |
| 83 | 82 | simp2bi | ⊢ ( 𝐴 ∈ dom arctan → 𝐴 ≠ - i ) |
| 84 | negicn | ⊢ - i ∈ ℂ | |
| 85 | subeq0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ - i ∈ ℂ ) → ( ( 𝐴 − - i ) = 0 ↔ 𝐴 = - i ) ) | |
| 86 | 85 | necon3bid | ⊢ ( ( 𝐴 ∈ ℂ ∧ - i ∈ ℂ ) → ( ( 𝐴 − - i ) ≠ 0 ↔ 𝐴 ≠ - i ) ) |
| 87 | 22 84 86 | sylancl | ⊢ ( 𝐴 ∈ dom arctan → ( ( 𝐴 − - i ) ≠ 0 ↔ 𝐴 ≠ - i ) ) |
| 88 | 83 87 | mpbird | ⊢ ( 𝐴 ∈ dom arctan → ( 𝐴 − - i ) ≠ 0 ) |
| 89 | 81 88 | eqnetrrd | ⊢ ( 𝐴 ∈ dom arctan → ( 𝐴 + i ) ≠ 0 ) |
| 90 | 37 79 79 89 | divsubdird | ⊢ ( 𝐴 ∈ dom arctan → ( ( ( 2 · i ) − ( 𝐴 + i ) ) / ( 𝐴 + i ) ) = ( ( ( 2 · i ) / ( 𝐴 + i ) ) − ( ( 𝐴 + i ) / ( 𝐴 + i ) ) ) ) |
| 91 | 74 77 90 | 3eqtr3d | ⊢ ( 𝐴 ∈ dom arctan → ( ( 1 + ( i · 𝐴 ) ) / ( 1 − ( i · 𝐴 ) ) ) = ( ( ( 2 · i ) / ( 𝐴 + i ) ) − ( ( 𝐴 + i ) / ( 𝐴 + i ) ) ) ) |
| 92 | 79 89 | dividd | ⊢ ( 𝐴 ∈ dom arctan → ( ( 𝐴 + i ) / ( 𝐴 + i ) ) = 1 ) |
| 93 | 92 | oveq2d | ⊢ ( 𝐴 ∈ dom arctan → ( ( ( 2 · i ) / ( 𝐴 + i ) ) − ( ( 𝐴 + i ) / ( 𝐴 + i ) ) ) = ( ( ( 2 · i ) / ( 𝐴 + i ) ) − 1 ) ) |
| 94 | 50 91 93 | 3eqtrd | ⊢ ( 𝐴 ∈ dom arctan → ( ( exp ‘ ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) / ( exp ‘ ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ) = ( ( ( 2 · i ) / ( 𝐴 + i ) ) − 1 ) ) |
| 95 | 43 45 94 | 3eqtrd | ⊢ ( 𝐴 ∈ dom arctan → ( exp ‘ ( 2 · ( i · ( arctan ‘ 𝐴 ) ) ) ) = ( ( ( 2 · i ) / ( 𝐴 + i ) ) − 1 ) ) |