This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton { A } is never equinumerous with the ordinal number 2. This holds for proper singletons ( A e.V ) as well as for singletons being the empty set ( A e/ V ). (Contributed by AV, 6-Aug-2019) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 1-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snnen2o | |- -. { A } ~~ 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o3 | |- 2o = { (/) , 1o } |
|
| 2 | 0ex | |- (/) e. _V |
|
| 3 | 1oex | |- 1o e. _V |
|
| 4 | 1n0 | |- 1o =/= (/) |
|
| 5 | 4 | necomi | |- (/) =/= 1o |
| 6 | prnesn | |- ( ( (/) e. _V /\ 1o e. _V /\ (/) =/= 1o ) -> { (/) , 1o } =/= { x } ) |
|
| 7 | 2 3 5 6 | mp3an | |- { (/) , 1o } =/= { x } |
| 8 | 1 7 | eqnetri | |- 2o =/= { x } |
| 9 | 8 | neii | |- -. 2o = { x } |
| 10 | 9 | nex | |- -. E. x 2o = { x } |
| 11 | 2on0 | |- 2o =/= (/) |
|
| 12 | f1cdmsn | |- ( ( `' f : 2o -1-1-> { A } /\ 2o =/= (/) ) -> E. x 2o = { x } ) |
|
| 13 | 11 12 | mpan2 | |- ( `' f : 2o -1-1-> { A } -> E. x 2o = { x } ) |
| 14 | 10 13 | mto | |- -. `' f : 2o -1-1-> { A } |
| 15 | f1ocnv | |- ( f : { A } -1-1-onto-> 2o -> `' f : 2o -1-1-onto-> { A } ) |
|
| 16 | f1of1 | |- ( `' f : 2o -1-1-onto-> { A } -> `' f : 2o -1-1-> { A } ) |
|
| 17 | 15 16 | syl | |- ( f : { A } -1-1-onto-> 2o -> `' f : 2o -1-1-> { A } ) |
| 18 | 14 17 | mto | |- -. f : { A } -1-1-onto-> 2o |
| 19 | 18 | nex | |- -. E. f f : { A } -1-1-onto-> 2o |
| 20 | snex | |- { A } e. _V |
|
| 21 | 2oex | |- 2o e. _V |
|
| 22 | breng | |- ( ( { A } e. _V /\ 2o e. _V ) -> ( { A } ~~ 2o <-> E. f f : { A } -1-1-onto-> 2o ) ) |
|
| 23 | 20 21 22 | mp2an | |- ( { A } ~~ 2o <-> E. f f : { A } -1-1-onto-> 2o ) |
| 24 | 19 23 | mtbir | |- -. { A } ~~ 2o |