This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set that has at least 2 different members dominates ordinal 2. (Contributed by BTernaryTau, 30-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rex2dom | |- ( ( A e. V /\ E. x e. A E. y e. A x =/= y ) -> 2o ~<_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( A e. V -> A e. _V ) |
|
| 2 | prssi | |- ( ( x e. A /\ y e. A ) -> { x , y } C_ A ) |
|
| 3 | df2o3 | |- 2o = { (/) , 1o } |
|
| 4 | 0ex | |- (/) e. _V |
|
| 5 | 4 | a1i | |- ( x =/= y -> (/) e. _V ) |
| 6 | 1oex | |- 1o e. _V |
|
| 7 | 6 | a1i | |- ( x =/= y -> 1o e. _V ) |
| 8 | vex | |- x e. _V |
|
| 9 | 8 | a1i | |- ( x =/= y -> x e. _V ) |
| 10 | vex | |- y e. _V |
|
| 11 | 10 | a1i | |- ( x =/= y -> y e. _V ) |
| 12 | 1n0 | |- 1o =/= (/) |
|
| 13 | 12 | necomi | |- (/) =/= 1o |
| 14 | 13 | a1i | |- ( x =/= y -> (/) =/= 1o ) |
| 15 | id | |- ( x =/= y -> x =/= y ) |
|
| 16 | 5 7 9 11 14 15 | en2prd | |- ( x =/= y -> { (/) , 1o } ~~ { x , y } ) |
| 17 | 3 16 | eqbrtrid | |- ( x =/= y -> 2o ~~ { x , y } ) |
| 18 | endom | |- ( 2o ~~ { x , y } -> 2o ~<_ { x , y } ) |
|
| 19 | 17 18 | syl | |- ( x =/= y -> 2o ~<_ { x , y } ) |
| 20 | domssr | |- ( ( A e. _V /\ { x , y } C_ A /\ 2o ~<_ { x , y } ) -> 2o ~<_ A ) |
|
| 21 | 20 | 3expib | |- ( A e. _V -> ( ( { x , y } C_ A /\ 2o ~<_ { x , y } ) -> 2o ~<_ A ) ) |
| 22 | 2 19 21 | syl2ani | |- ( A e. _V -> ( ( ( x e. A /\ y e. A ) /\ x =/= y ) -> 2o ~<_ A ) ) |
| 23 | 22 | expd | |- ( A e. _V -> ( ( x e. A /\ y e. A ) -> ( x =/= y -> 2o ~<_ A ) ) ) |
| 24 | 23 | rexlimdvv | |- ( A e. _V -> ( E. x e. A E. y e. A x =/= y -> 2o ~<_ A ) ) |
| 25 | 1 24 | syl | |- ( A e. V -> ( E. x e. A E. y e. A x =/= y -> 2o ~<_ A ) ) |
| 26 | 25 | imp | |- ( ( A e. V /\ E. x e. A E. y e. A x =/= y ) -> 2o ~<_ A ) |