This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a one-to-one function with a nonempty domain has a singleton as its codomain, its domain must also be a singleton. (Contributed by BTernaryTau, 1-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1cdmsn | |- ( ( F : A -1-1-> { B } /\ A =/= (/) ) -> E. x A = { x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f | |- ( F : A -1-1-> { B } -> F : A --> { B } ) |
|
| 2 | fvconst | |- ( ( F : A --> { B } /\ y e. A ) -> ( F ` y ) = B ) |
|
| 3 | 2 | 3adant3 | |- ( ( F : A --> { B } /\ y e. A /\ z e. A ) -> ( F ` y ) = B ) |
| 4 | fvconst | |- ( ( F : A --> { B } /\ z e. A ) -> ( F ` z ) = B ) |
|
| 5 | 4 | 3adant2 | |- ( ( F : A --> { B } /\ y e. A /\ z e. A ) -> ( F ` z ) = B ) |
| 6 | 3 5 | eqtr4d | |- ( ( F : A --> { B } /\ y e. A /\ z e. A ) -> ( F ` y ) = ( F ` z ) ) |
| 7 | 1 6 | syl3an1 | |- ( ( F : A -1-1-> { B } /\ y e. A /\ z e. A ) -> ( F ` y ) = ( F ` z ) ) |
| 8 | f1veqaeq | |- ( ( F : A -1-1-> { B } /\ ( y e. A /\ z e. A ) ) -> ( ( F ` y ) = ( F ` z ) -> y = z ) ) |
|
| 9 | 8 | 3impb | |- ( ( F : A -1-1-> { B } /\ y e. A /\ z e. A ) -> ( ( F ` y ) = ( F ` z ) -> y = z ) ) |
| 10 | 7 9 | mpd | |- ( ( F : A -1-1-> { B } /\ y e. A /\ z e. A ) -> y = z ) |
| 11 | 10 | 3expia | |- ( ( F : A -1-1-> { B } /\ y e. A ) -> ( z e. A -> y = z ) ) |
| 12 | 11 | ralrimiv | |- ( ( F : A -1-1-> { B } /\ y e. A ) -> A. z e. A y = z ) |
| 13 | 12 | reximdva0 | |- ( ( F : A -1-1-> { B } /\ A =/= (/) ) -> E. y e. A A. z e. A y = z ) |
| 14 | issn | |- ( E. y e. A A. z e. A y = z -> E. x A = { x } ) |
|
| 15 | 13 14 | syl | |- ( ( F : A -1-1-> { B } /\ A =/= (/) ) -> E. x A = { x } ) |