This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A is a subset of B and C dominates B , then C also dominates A . (Contributed by BTernaryTau, 7-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domssl | |- ( ( A C_ B /\ B ~<_ C ) -> A ~<_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( A C_ B /\ B ~<_ C ) -> B ~<_ C ) |
|
| 2 | reldom | |- Rel ~<_ |
|
| 3 | 2 | brrelex12i | |- ( B ~<_ C -> ( B e. _V /\ C e. _V ) ) |
| 4 | simpl | |- ( ( A C_ B /\ ( B e. _V /\ C e. _V ) ) -> A C_ B ) |
|
| 5 | ssexg | |- ( ( A C_ B /\ B e. _V ) -> A e. _V ) |
|
| 6 | 5 | adantrr | |- ( ( A C_ B /\ ( B e. _V /\ C e. _V ) ) -> A e. _V ) |
| 7 | simprr | |- ( ( A C_ B /\ ( B e. _V /\ C e. _V ) ) -> C e. _V ) |
|
| 8 | 4 6 7 | jca32 | |- ( ( A C_ B /\ ( B e. _V /\ C e. _V ) ) -> ( A C_ B /\ ( A e. _V /\ C e. _V ) ) ) |
| 9 | 3 8 | sylan2 | |- ( ( A C_ B /\ B ~<_ C ) -> ( A C_ B /\ ( A e. _V /\ C e. _V ) ) ) |
| 10 | brdomi | |- ( B ~<_ C -> E. f f : B -1-1-> C ) |
|
| 11 | f1ssres | |- ( ( f : B -1-1-> C /\ A C_ B ) -> ( f |` A ) : A -1-1-> C ) |
|
| 12 | vex | |- f e. _V |
|
| 13 | 12 | resex | |- ( f |` A ) e. _V |
| 14 | f1dom4g | |- ( ( ( ( f |` A ) e. _V /\ A e. _V /\ C e. _V ) /\ ( f |` A ) : A -1-1-> C ) -> A ~<_ C ) |
|
| 15 | 13 14 | mp3anl1 | |- ( ( ( A e. _V /\ C e. _V ) /\ ( f |` A ) : A -1-1-> C ) -> A ~<_ C ) |
| 16 | 15 | ancoms | |- ( ( ( f |` A ) : A -1-1-> C /\ ( A e. _V /\ C e. _V ) ) -> A ~<_ C ) |
| 17 | 11 16 | sylan | |- ( ( ( f : B -1-1-> C /\ A C_ B ) /\ ( A e. _V /\ C e. _V ) ) -> A ~<_ C ) |
| 18 | 17 | expl | |- ( f : B -1-1-> C -> ( ( A C_ B /\ ( A e. _V /\ C e. _V ) ) -> A ~<_ C ) ) |
| 19 | 18 | exlimiv | |- ( E. f f : B -1-1-> C -> ( ( A C_ B /\ ( A e. _V /\ C e. _V ) ) -> A ~<_ C ) ) |
| 20 | 10 19 | syl | |- ( B ~<_ C -> ( ( A C_ B /\ ( A e. _V /\ C e. _V ) ) -> A ~<_ C ) ) |
| 21 | 1 9 20 | sylc | |- ( ( A C_ B /\ B ~<_ C ) -> A ~<_ C ) |