This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set that strictly dominates ordinal 1 has at least 2 different members. (Closely related to 2dom .) (Contributed by Mario Carneiro, 12-Jan-2013) Avoid ax-un . (Revised by BTernaryTau, 30-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1sdom | |- ( A e. V -> ( 1o ~< A <-> E. x e. A E. y e. A -. x = y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1sdom2dom | |- ( 1o ~< A <-> 2o ~<_ A ) |
|
| 2 | 2dom | |- ( 2o ~<_ A -> E. x e. A E. y e. A -. x = y ) |
|
| 3 | df-ne | |- ( x =/= y <-> -. x = y ) |
|
| 4 | 3 | 2rexbii | |- ( E. x e. A E. y e. A x =/= y <-> E. x e. A E. y e. A -. x = y ) |
| 5 | rex2dom | |- ( ( A e. V /\ E. x e. A E. y e. A x =/= y ) -> 2o ~<_ A ) |
|
| 6 | 4 5 | sylan2br | |- ( ( A e. V /\ E. x e. A E. y e. A -. x = y ) -> 2o ~<_ A ) |
| 7 | 6 | ex | |- ( A e. V -> ( E. x e. A E. y e. A -. x = y -> 2o ~<_ A ) ) |
| 8 | 2 7 | impbid2 | |- ( A e. V -> ( 2o ~<_ A <-> E. x e. A E. y e. A -. x = y ) ) |
| 9 | 1 8 | bitrid | |- ( A e. V -> ( 1o ~< A <-> E. x e. A E. y e. A -. x = y ) ) |