This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition law for chained substitutions into a class. Version of csbco with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 10-Nov-2005) Avoid ax-13 . (Revised by GG, 10-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbcow | ⊢ ⦋ 𝐴 / 𝑦 ⦌ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb | ⊢ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = { 𝑧 ∣ [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝐵 } | |
| 2 | 1 | eqabri | ⊢ ( 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↔ [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝐵 ) |
| 3 | 2 | sbcbii | ⊢ ( [ 𝐴 / 𝑦 ] 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↔ [ 𝐴 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝐵 ) |
| 4 | sbccow | ⊢ ( [ 𝐴 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝐵 ↔ [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 ) | |
| 5 | 3 4 | bitri | ⊢ ( [ 𝐴 / 𝑦 ] 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↔ [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 ) |
| 6 | 5 | abbii | ⊢ { 𝑧 ∣ [ 𝐴 / 𝑦 ] 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 } = { 𝑧 ∣ [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 } |
| 7 | df-csb | ⊢ ⦋ 𝐴 / 𝑦 ⦌ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = { 𝑧 ∣ [ 𝐴 / 𝑦 ] 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 } | |
| 8 | df-csb | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = { 𝑧 ∣ [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 } | |
| 9 | 6 7 8 | 3eqtr4i | ⊢ ⦋ 𝐴 / 𝑦 ⦌ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 |