This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013) (Revised by Mario Carneiro, 9-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | summo.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) | |
| summo.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| sumrb.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| sumrb.5 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
| sumrb.6 | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) | ||
| sumrb.7 | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) | ||
| Assertion | sumrb | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ⇝ 𝐶 ↔ seq 𝑁 ( + , 𝐹 ) ⇝ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | summo.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) | |
| 2 | summo.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 3 | sumrb.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | sumrb.5 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 5 | sumrb.6 | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) | |
| 6 | sumrb.7 | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) | |
| 7 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑁 ∈ ℤ ) |
| 8 | seqex | ⊢ seq 𝑀 ( + , 𝐹 ) ∈ V | |
| 9 | climres | ⊢ ( ( 𝑁 ∈ ℤ ∧ seq 𝑀 ( + , 𝐹 ) ∈ V ) → ( ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ 𝑁 ) ) ⇝ 𝐶 ↔ seq 𝑀 ( + , 𝐹 ) ⇝ 𝐶 ) ) | |
| 10 | 7 8 9 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ 𝑁 ) ) ⇝ 𝐶 ↔ seq 𝑀 ( + , 𝐹 ) ⇝ 𝐶 ) ) |
| 11 | 2 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 12 | simpr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 13 | 1 11 12 | sumrblem | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑁 ) ) → ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ 𝑁 ) ) = seq 𝑁 ( + , 𝐹 ) ) |
| 14 | 6 13 | mpidan | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ 𝑁 ) ) = seq 𝑁 ( + , 𝐹 ) ) |
| 15 | 14 | breq1d | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ 𝑁 ) ) ⇝ 𝐶 ↔ seq 𝑁 ( + , 𝐹 ) ⇝ 𝐶 ) ) |
| 16 | 10 15 | bitr3d | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( seq 𝑀 ( + , 𝐹 ) ⇝ 𝐶 ↔ seq 𝑁 ( + , 𝐹 ) ⇝ 𝐶 ) ) |
| 17 | 2 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 18 | simpr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 19 | 1 17 18 | sumrblem | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) → ( seq 𝑁 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ 𝑀 ) ) = seq 𝑀 ( + , 𝐹 ) ) |
| 20 | 5 19 | mpidan | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( seq 𝑁 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ 𝑀 ) ) = seq 𝑀 ( + , 𝐹 ) ) |
| 21 | 20 | breq1d | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( seq 𝑁 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ 𝑀 ) ) ⇝ 𝐶 ↔ seq 𝑀 ( + , 𝐹 ) ⇝ 𝐶 ) ) |
| 22 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ ℤ ) |
| 23 | seqex | ⊢ seq 𝑁 ( + , 𝐹 ) ∈ V | |
| 24 | climres | ⊢ ( ( 𝑀 ∈ ℤ ∧ seq 𝑁 ( + , 𝐹 ) ∈ V ) → ( ( seq 𝑁 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ 𝑀 ) ) ⇝ 𝐶 ↔ seq 𝑁 ( + , 𝐹 ) ⇝ 𝐶 ) ) | |
| 25 | 22 23 24 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( seq 𝑁 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ 𝑀 ) ) ⇝ 𝐶 ↔ seq 𝑁 ( + , 𝐹 ) ⇝ 𝐶 ) ) |
| 26 | 21 25 | bitr3d | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( seq 𝑀 ( + , 𝐹 ) ⇝ 𝐶 ↔ seq 𝑁 ( + , 𝐹 ) ⇝ 𝐶 ) ) |
| 27 | uztric | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∨ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) | |
| 28 | 3 4 27 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∨ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) |
| 29 | 16 26 28 | mpjaodan | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ⇝ 𝐶 ↔ seq 𝑁 ( + , 𝐹 ) ⇝ 𝐶 ) ) |