This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant mapping to zero is a non-unital ring homomorphism from the zero ring to any non-unital ring. (Contributed by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrrnghm.b | ⊢ 𝐵 = ( Base ‘ 𝑇 ) | |
| zrrnghm.0 | ⊢ 0 = ( 0g ‘ 𝑆 ) | ||
| zrrnghm.h | ⊢ 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) | ||
| Assertion | zrrnghm | ⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 ∈ ( 𝑇 RngHom 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrrnghm.b | ⊢ 𝐵 = ( Base ‘ 𝑇 ) | |
| 2 | zrrnghm.0 | ⊢ 0 = ( 0g ‘ 𝑆 ) | |
| 3 | zrrnghm.h | ⊢ 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) | |
| 4 | eldifi | ⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → 𝑇 ∈ Ring ) | |
| 5 | ringrng | ⊢ ( 𝑇 ∈ Ring → 𝑇 ∈ Rng ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → 𝑇 ∈ Rng ) |
| 7 | 6 | anim1i | ⊢ ( ( 𝑇 ∈ ( Ring ∖ NzRing ) ∧ 𝑆 ∈ Rng ) → ( 𝑇 ∈ Rng ∧ 𝑆 ∈ Rng ) ) |
| 8 | 7 | ancoms | ⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 𝑇 ∈ Rng ∧ 𝑆 ∈ Rng ) ) |
| 9 | rngabl | ⊢ ( 𝑆 ∈ Rng → 𝑆 ∈ Abel ) | |
| 10 | ablgrp | ⊢ ( 𝑆 ∈ Abel → 𝑆 ∈ Grp ) | |
| 11 | 9 10 | syl | ⊢ ( 𝑆 ∈ Rng → 𝑆 ∈ Grp ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝑆 ∈ Grp ) |
| 13 | ringgrp | ⊢ ( 𝑇 ∈ Ring → 𝑇 ∈ Grp ) | |
| 14 | 4 13 | syl | ⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → 𝑇 ∈ Grp ) |
| 15 | 14 | adantl | ⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝑇 ∈ Grp ) |
| 16 | eqid | ⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) | |
| 17 | 1 16 | 0ringbas | ⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → 𝐵 = { ( 0g ‘ 𝑇 ) } ) |
| 18 | 17 | adantl | ⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐵 = { ( 0g ‘ 𝑇 ) } ) |
| 19 | 1 2 3 16 | c0snghm | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → 𝐻 ∈ ( 𝑇 GrpHom 𝑆 ) ) |
| 20 | 12 15 18 19 | syl3anc | ⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 ∈ ( 𝑇 GrpHom 𝑆 ) ) |
| 21 | 3 | a1i | ⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) ) |
| 22 | eqidd | ⊢ ( ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) ∧ 𝑥 = ( 0g ‘ 𝑇 ) ) → 0 = 0 ) | |
| 23 | 1 16 | ring0cl | ⊢ ( 𝑇 ∈ Ring → ( 0g ‘ 𝑇 ) ∈ 𝐵 ) |
| 24 | 4 23 | syl | ⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → ( 0g ‘ 𝑇 ) ∈ 𝐵 ) |
| 25 | 24 | ad2antlr | ⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ( 0g ‘ 𝑇 ) ∈ 𝐵 ) |
| 26 | 2 | fvexi | ⊢ 0 ∈ V |
| 27 | 26 | a1i | ⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → 0 ∈ V ) |
| 28 | 21 22 25 27 | fvmptd | ⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) |
| 29 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 30 | 29 2 | grpidcl | ⊢ ( 𝑆 ∈ Grp → 0 ∈ ( Base ‘ 𝑆 ) ) |
| 31 | 11 30 | syl | ⊢ ( 𝑆 ∈ Rng → 0 ∈ ( Base ‘ 𝑆 ) ) |
| 32 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 33 | 29 32 2 | rnglz | ⊢ ( ( 𝑆 ∈ Rng ∧ 0 ∈ ( Base ‘ 𝑆 ) ) → ( 0 ( .r ‘ 𝑆 ) 0 ) = 0 ) |
| 34 | 31 33 | mpdan | ⊢ ( 𝑆 ∈ Rng → ( 0 ( .r ‘ 𝑆 ) 0 ) = 0 ) |
| 35 | 34 | adantr | ⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 0 ( .r ‘ 𝑆 ) 0 ) = 0 ) |
| 36 | 35 | adantr | ⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ( 0 ( .r ‘ 𝑆 ) 0 ) = 0 ) |
| 37 | 36 | adantr | ⊢ ( ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) ∧ ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) → ( 0 ( .r ‘ 𝑆 ) 0 ) = 0 ) |
| 38 | simpr | ⊢ ( ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) ∧ ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) → ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) | |
| 39 | 38 38 | oveq12d | ⊢ ( ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) ∧ ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) → ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) = ( 0 ( .r ‘ 𝑆 ) 0 ) ) |
| 40 | eqid | ⊢ ( .r ‘ 𝑇 ) = ( .r ‘ 𝑇 ) | |
| 41 | 1 40 16 | ringlz | ⊢ ( ( 𝑇 ∈ Ring ∧ ( 0g ‘ 𝑇 ) ∈ 𝐵 ) → ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) = ( 0g ‘ 𝑇 ) ) |
| 42 | 4 23 41 | syl2anc2 | ⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) = ( 0g ‘ 𝑇 ) ) |
| 43 | 42 | ad2antlr | ⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) = ( 0g ‘ 𝑇 ) ) |
| 44 | 43 | adantr | ⊢ ( ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) ∧ ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) → ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) = ( 0g ‘ 𝑇 ) ) |
| 45 | 44 | fveq2d | ⊢ ( ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) ∧ ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) → ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) = ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) |
| 46 | 45 38 | eqtrd | ⊢ ( ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) ∧ ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) → ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) = 0 ) |
| 47 | 37 39 46 | 3eqtr4rd | ⊢ ( ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) ∧ ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) → ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) = ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) ) |
| 48 | 28 47 | mpdan | ⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) = ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) ) |
| 49 | 23 23 | jca | ⊢ ( 𝑇 ∈ Ring → ( ( 0g ‘ 𝑇 ) ∈ 𝐵 ∧ ( 0g ‘ 𝑇 ) ∈ 𝐵 ) ) |
| 50 | 4 49 | syl | ⊢ ( 𝑇 ∈ ( Ring ∖ NzRing ) → ( ( 0g ‘ 𝑇 ) ∈ 𝐵 ∧ ( 0g ‘ 𝑇 ) ∈ 𝐵 ) ) |
| 51 | 50 | ad2antlr | ⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ( ( 0g ‘ 𝑇 ) ∈ 𝐵 ∧ ( 0g ‘ 𝑇 ) ∈ 𝐵 ) ) |
| 52 | fvoveq1 | ⊢ ( 𝑎 = ( 0g ‘ 𝑇 ) → ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) 𝑐 ) ) ) | |
| 53 | fveq2 | ⊢ ( 𝑎 = ( 0g ‘ 𝑇 ) → ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) | |
| 54 | 53 | oveq1d | ⊢ ( 𝑎 = ( 0g ‘ 𝑇 ) → ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) = ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) |
| 55 | 52 54 | eqeq12d | ⊢ ( 𝑎 = ( 0g ‘ 𝑇 ) → ( ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) |
| 56 | oveq2 | ⊢ ( 𝑐 = ( 0g ‘ 𝑇 ) → ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) 𝑐 ) = ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) | |
| 57 | 56 | fveq2d | ⊢ ( 𝑐 = ( 0g ‘ 𝑇 ) → ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) 𝑐 ) ) = ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) ) |
| 58 | fveq2 | ⊢ ( 𝑐 = ( 0g ‘ 𝑇 ) → ( 𝐻 ‘ 𝑐 ) = ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) | |
| 59 | 58 | oveq2d | ⊢ ( 𝑐 = ( 0g ‘ 𝑇 ) → ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) = ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) ) |
| 60 | 57 59 | eqeq12d | ⊢ ( 𝑐 = ( 0g ‘ 𝑇 ) → ( ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) = ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) ) ) |
| 61 | 55 60 | 2ralsng | ⊢ ( ( ( 0g ‘ 𝑇 ) ∈ 𝐵 ∧ ( 0g ‘ 𝑇 ) ∈ 𝐵 ) → ( ∀ 𝑎 ∈ { ( 0g ‘ 𝑇 ) } ∀ 𝑐 ∈ { ( 0g ‘ 𝑇 ) } ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) = ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) ) ) |
| 62 | 51 61 | syl | ⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ( ∀ 𝑎 ∈ { ( 0g ‘ 𝑇 ) } ∀ 𝑐 ∈ { ( 0g ‘ 𝑇 ) } ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ( 𝐻 ‘ ( ( 0g ‘ 𝑇 ) ( .r ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) = ( ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ ( 0g ‘ 𝑇 ) ) ) ) ) |
| 63 | 48 62 | mpbird | ⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ∀ 𝑎 ∈ { ( 0g ‘ 𝑇 ) } ∀ 𝑐 ∈ { ( 0g ‘ 𝑇 ) } ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) |
| 64 | raleq | ⊢ ( 𝐵 = { ( 0g ‘ 𝑇 ) } → ( ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ∀ 𝑐 ∈ { ( 0g ‘ 𝑇 ) } ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) | |
| 65 | 64 | raleqbi1dv | ⊢ ( 𝐵 = { ( 0g ‘ 𝑇 ) } → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ∀ 𝑎 ∈ { ( 0g ‘ 𝑇 ) } ∀ 𝑐 ∈ { ( 0g ‘ 𝑇 ) } ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) |
| 66 | 65 | adantl | ⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ∀ 𝑎 ∈ { ( 0g ‘ 𝑇 ) } ∀ 𝑐 ∈ { ( 0g ‘ 𝑇 ) } ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) |
| 67 | 63 66 | mpbird | ⊢ ( ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) ∧ 𝐵 = { ( 0g ‘ 𝑇 ) } ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) |
| 68 | 18 67 | mpdan | ⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) |
| 69 | 20 68 | jca | ⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → ( 𝐻 ∈ ( 𝑇 GrpHom 𝑆 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) |
| 70 | 1 40 32 | isrnghm | ⊢ ( 𝐻 ∈ ( 𝑇 RngHom 𝑆 ) ↔ ( ( 𝑇 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( 𝐻 ∈ ( 𝑇 GrpHom 𝑆 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( .r ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) ) |
| 71 | 8 69 70 | sylanbrc | ⊢ ( ( 𝑆 ∈ Rng ∧ 𝑇 ∈ ( Ring ∖ NzRing ) ) → 𝐻 ∈ ( 𝑇 RngHom 𝑆 ) ) |