This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant mapping to zero is a group homomorphism from the trivial group (consisting of the zero only) to any group. (Contributed by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrrhm.b | ⊢ 𝐵 = ( Base ‘ 𝑇 ) | |
| zrrhm.0 | ⊢ 0 = ( 0g ‘ 𝑆 ) | ||
| zrrhm.h | ⊢ 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) | ||
| c0snmhm.z | ⊢ 𝑍 = ( 0g ‘ 𝑇 ) | ||
| Assertion | c0snghm | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = { 𝑍 } ) → 𝐻 ∈ ( 𝑇 GrpHom 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrrhm.b | ⊢ 𝐵 = ( Base ‘ 𝑇 ) | |
| 2 | zrrhm.0 | ⊢ 0 = ( 0g ‘ 𝑆 ) | |
| 3 | zrrhm.h | ⊢ 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) | |
| 4 | c0snmhm.z | ⊢ 𝑍 = ( 0g ‘ 𝑇 ) | |
| 5 | grpmnd | ⊢ ( 𝑆 ∈ Grp → 𝑆 ∈ Mnd ) | |
| 6 | grpmnd | ⊢ ( 𝑇 ∈ Grp → 𝑇 ∈ Mnd ) | |
| 7 | id | ⊢ ( 𝐵 = { 𝑍 } → 𝐵 = { 𝑍 } ) | |
| 8 | 1 2 3 4 | c0snmhm | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = { 𝑍 } ) → 𝐻 ∈ ( 𝑇 MndHom 𝑆 ) ) |
| 9 | 5 6 7 8 | syl3an | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = { 𝑍 } ) → 𝐻 ∈ ( 𝑇 MndHom 𝑆 ) ) |
| 10 | ghmmhmb | ⊢ ( ( 𝑇 ∈ Grp ∧ 𝑆 ∈ Grp ) → ( 𝑇 GrpHom 𝑆 ) = ( 𝑇 MndHom 𝑆 ) ) | |
| 11 | 10 | eleq2d | ⊢ ( ( 𝑇 ∈ Grp ∧ 𝑆 ∈ Grp ) → ( 𝐻 ∈ ( 𝑇 GrpHom 𝑆 ) ↔ 𝐻 ∈ ( 𝑇 MndHom 𝑆 ) ) ) |
| 12 | 11 | ancoms | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → ( 𝐻 ∈ ( 𝑇 GrpHom 𝑆 ) ↔ 𝐻 ∈ ( 𝑇 MndHom 𝑆 ) ) ) |
| 13 | 12 | 3adant3 | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = { 𝑍 } ) → ( 𝐻 ∈ ( 𝑇 GrpHom 𝑆 ) ↔ 𝐻 ∈ ( 𝑇 MndHom 𝑆 ) ) ) |
| 14 | 9 13 | mpbird | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = { 𝑍 } ) → 𝐻 ∈ ( 𝑇 GrpHom 𝑆 ) ) |