This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of a zero ring, a ring which is not a nonzero ring, is the singleton of the zero element. (Contributed by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0ring.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 0ring.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | 0ringbas | ⊢ ( 𝑅 ∈ ( Ring ∖ NzRing ) → 𝐵 = { 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ring.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | 0ring.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | 1 2 | 0ringdif | ⊢ ( 𝑅 ∈ ( Ring ∖ NzRing ) ↔ ( 𝑅 ∈ Ring ∧ 𝐵 = { 0 } ) ) |
| 4 | 3 | simprbi | ⊢ ( 𝑅 ∈ ( Ring ∖ NzRing ) → 𝐵 = { 0 } ) |