This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant mapping to zero is a non-unital ring homomorphism from the zero ring to any non-unital ring. (Contributed by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrrnghm.b | |- B = ( Base ` T ) |
|
| zrrnghm.0 | |- .0. = ( 0g ` S ) |
||
| zrrnghm.h | |- H = ( x e. B |-> .0. ) |
||
| Assertion | zrrnghm | |- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> H e. ( T RngHom S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrrnghm.b | |- B = ( Base ` T ) |
|
| 2 | zrrnghm.0 | |- .0. = ( 0g ` S ) |
|
| 3 | zrrnghm.h | |- H = ( x e. B |-> .0. ) |
|
| 4 | eldifi | |- ( T e. ( Ring \ NzRing ) -> T e. Ring ) |
|
| 5 | ringrng | |- ( T e. Ring -> T e. Rng ) |
|
| 6 | 4 5 | syl | |- ( T e. ( Ring \ NzRing ) -> T e. Rng ) |
| 7 | 6 | anim1i | |- ( ( T e. ( Ring \ NzRing ) /\ S e. Rng ) -> ( T e. Rng /\ S e. Rng ) ) |
| 8 | 7 | ancoms | |- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> ( T e. Rng /\ S e. Rng ) ) |
| 9 | rngabl | |- ( S e. Rng -> S e. Abel ) |
|
| 10 | ablgrp | |- ( S e. Abel -> S e. Grp ) |
|
| 11 | 9 10 | syl | |- ( S e. Rng -> S e. Grp ) |
| 12 | 11 | adantr | |- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> S e. Grp ) |
| 13 | ringgrp | |- ( T e. Ring -> T e. Grp ) |
|
| 14 | 4 13 | syl | |- ( T e. ( Ring \ NzRing ) -> T e. Grp ) |
| 15 | 14 | adantl | |- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> T e. Grp ) |
| 16 | eqid | |- ( 0g ` T ) = ( 0g ` T ) |
|
| 17 | 1 16 | 0ringbas | |- ( T e. ( Ring \ NzRing ) -> B = { ( 0g ` T ) } ) |
| 18 | 17 | adantl | |- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> B = { ( 0g ` T ) } ) |
| 19 | 1 2 3 16 | c0snghm | |- ( ( S e. Grp /\ T e. Grp /\ B = { ( 0g ` T ) } ) -> H e. ( T GrpHom S ) ) |
| 20 | 12 15 18 19 | syl3anc | |- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> H e. ( T GrpHom S ) ) |
| 21 | 3 | a1i | |- ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) -> H = ( x e. B |-> .0. ) ) |
| 22 | eqidd | |- ( ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) /\ x = ( 0g ` T ) ) -> .0. = .0. ) |
|
| 23 | 1 16 | ring0cl | |- ( T e. Ring -> ( 0g ` T ) e. B ) |
| 24 | 4 23 | syl | |- ( T e. ( Ring \ NzRing ) -> ( 0g ` T ) e. B ) |
| 25 | 24 | ad2antlr | |- ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) -> ( 0g ` T ) e. B ) |
| 26 | 2 | fvexi | |- .0. e. _V |
| 27 | 26 | a1i | |- ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) -> .0. e. _V ) |
| 28 | 21 22 25 27 | fvmptd | |- ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) -> ( H ` ( 0g ` T ) ) = .0. ) |
| 29 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 30 | 29 2 | grpidcl | |- ( S e. Grp -> .0. e. ( Base ` S ) ) |
| 31 | 11 30 | syl | |- ( S e. Rng -> .0. e. ( Base ` S ) ) |
| 32 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 33 | 29 32 2 | rnglz | |- ( ( S e. Rng /\ .0. e. ( Base ` S ) ) -> ( .0. ( .r ` S ) .0. ) = .0. ) |
| 34 | 31 33 | mpdan | |- ( S e. Rng -> ( .0. ( .r ` S ) .0. ) = .0. ) |
| 35 | 34 | adantr | |- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> ( .0. ( .r ` S ) .0. ) = .0. ) |
| 36 | 35 | adantr | |- ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) -> ( .0. ( .r ` S ) .0. ) = .0. ) |
| 37 | 36 | adantr | |- ( ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) /\ ( H ` ( 0g ` T ) ) = .0. ) -> ( .0. ( .r ` S ) .0. ) = .0. ) |
| 38 | simpr | |- ( ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) /\ ( H ` ( 0g ` T ) ) = .0. ) -> ( H ` ( 0g ` T ) ) = .0. ) |
|
| 39 | 38 38 | oveq12d | |- ( ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) /\ ( H ` ( 0g ` T ) ) = .0. ) -> ( ( H ` ( 0g ` T ) ) ( .r ` S ) ( H ` ( 0g ` T ) ) ) = ( .0. ( .r ` S ) .0. ) ) |
| 40 | eqid | |- ( .r ` T ) = ( .r ` T ) |
|
| 41 | 1 40 16 | ringlz | |- ( ( T e. Ring /\ ( 0g ` T ) e. B ) -> ( ( 0g ` T ) ( .r ` T ) ( 0g ` T ) ) = ( 0g ` T ) ) |
| 42 | 4 23 41 | syl2anc2 | |- ( T e. ( Ring \ NzRing ) -> ( ( 0g ` T ) ( .r ` T ) ( 0g ` T ) ) = ( 0g ` T ) ) |
| 43 | 42 | ad2antlr | |- ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) -> ( ( 0g ` T ) ( .r ` T ) ( 0g ` T ) ) = ( 0g ` T ) ) |
| 44 | 43 | adantr | |- ( ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) /\ ( H ` ( 0g ` T ) ) = .0. ) -> ( ( 0g ` T ) ( .r ` T ) ( 0g ` T ) ) = ( 0g ` T ) ) |
| 45 | 44 | fveq2d | |- ( ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) /\ ( H ` ( 0g ` T ) ) = .0. ) -> ( H ` ( ( 0g ` T ) ( .r ` T ) ( 0g ` T ) ) ) = ( H ` ( 0g ` T ) ) ) |
| 46 | 45 38 | eqtrd | |- ( ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) /\ ( H ` ( 0g ` T ) ) = .0. ) -> ( H ` ( ( 0g ` T ) ( .r ` T ) ( 0g ` T ) ) ) = .0. ) |
| 47 | 37 39 46 | 3eqtr4rd | |- ( ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) /\ ( H ` ( 0g ` T ) ) = .0. ) -> ( H ` ( ( 0g ` T ) ( .r ` T ) ( 0g ` T ) ) ) = ( ( H ` ( 0g ` T ) ) ( .r ` S ) ( H ` ( 0g ` T ) ) ) ) |
| 48 | 28 47 | mpdan | |- ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) -> ( H ` ( ( 0g ` T ) ( .r ` T ) ( 0g ` T ) ) ) = ( ( H ` ( 0g ` T ) ) ( .r ` S ) ( H ` ( 0g ` T ) ) ) ) |
| 49 | 23 23 | jca | |- ( T e. Ring -> ( ( 0g ` T ) e. B /\ ( 0g ` T ) e. B ) ) |
| 50 | 4 49 | syl | |- ( T e. ( Ring \ NzRing ) -> ( ( 0g ` T ) e. B /\ ( 0g ` T ) e. B ) ) |
| 51 | 50 | ad2antlr | |- ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) -> ( ( 0g ` T ) e. B /\ ( 0g ` T ) e. B ) ) |
| 52 | fvoveq1 | |- ( a = ( 0g ` T ) -> ( H ` ( a ( .r ` T ) c ) ) = ( H ` ( ( 0g ` T ) ( .r ` T ) c ) ) ) |
|
| 53 | fveq2 | |- ( a = ( 0g ` T ) -> ( H ` a ) = ( H ` ( 0g ` T ) ) ) |
|
| 54 | 53 | oveq1d | |- ( a = ( 0g ` T ) -> ( ( H ` a ) ( .r ` S ) ( H ` c ) ) = ( ( H ` ( 0g ` T ) ) ( .r ` S ) ( H ` c ) ) ) |
| 55 | 52 54 | eqeq12d | |- ( a = ( 0g ` T ) -> ( ( H ` ( a ( .r ` T ) c ) ) = ( ( H ` a ) ( .r ` S ) ( H ` c ) ) <-> ( H ` ( ( 0g ` T ) ( .r ` T ) c ) ) = ( ( H ` ( 0g ` T ) ) ( .r ` S ) ( H ` c ) ) ) ) |
| 56 | oveq2 | |- ( c = ( 0g ` T ) -> ( ( 0g ` T ) ( .r ` T ) c ) = ( ( 0g ` T ) ( .r ` T ) ( 0g ` T ) ) ) |
|
| 57 | 56 | fveq2d | |- ( c = ( 0g ` T ) -> ( H ` ( ( 0g ` T ) ( .r ` T ) c ) ) = ( H ` ( ( 0g ` T ) ( .r ` T ) ( 0g ` T ) ) ) ) |
| 58 | fveq2 | |- ( c = ( 0g ` T ) -> ( H ` c ) = ( H ` ( 0g ` T ) ) ) |
|
| 59 | 58 | oveq2d | |- ( c = ( 0g ` T ) -> ( ( H ` ( 0g ` T ) ) ( .r ` S ) ( H ` c ) ) = ( ( H ` ( 0g ` T ) ) ( .r ` S ) ( H ` ( 0g ` T ) ) ) ) |
| 60 | 57 59 | eqeq12d | |- ( c = ( 0g ` T ) -> ( ( H ` ( ( 0g ` T ) ( .r ` T ) c ) ) = ( ( H ` ( 0g ` T ) ) ( .r ` S ) ( H ` c ) ) <-> ( H ` ( ( 0g ` T ) ( .r ` T ) ( 0g ` T ) ) ) = ( ( H ` ( 0g ` T ) ) ( .r ` S ) ( H ` ( 0g ` T ) ) ) ) ) |
| 61 | 55 60 | 2ralsng | |- ( ( ( 0g ` T ) e. B /\ ( 0g ` T ) e. B ) -> ( A. a e. { ( 0g ` T ) } A. c e. { ( 0g ` T ) } ( H ` ( a ( .r ` T ) c ) ) = ( ( H ` a ) ( .r ` S ) ( H ` c ) ) <-> ( H ` ( ( 0g ` T ) ( .r ` T ) ( 0g ` T ) ) ) = ( ( H ` ( 0g ` T ) ) ( .r ` S ) ( H ` ( 0g ` T ) ) ) ) ) |
| 62 | 51 61 | syl | |- ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) -> ( A. a e. { ( 0g ` T ) } A. c e. { ( 0g ` T ) } ( H ` ( a ( .r ` T ) c ) ) = ( ( H ` a ) ( .r ` S ) ( H ` c ) ) <-> ( H ` ( ( 0g ` T ) ( .r ` T ) ( 0g ` T ) ) ) = ( ( H ` ( 0g ` T ) ) ( .r ` S ) ( H ` ( 0g ` T ) ) ) ) ) |
| 63 | 48 62 | mpbird | |- ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) -> A. a e. { ( 0g ` T ) } A. c e. { ( 0g ` T ) } ( H ` ( a ( .r ` T ) c ) ) = ( ( H ` a ) ( .r ` S ) ( H ` c ) ) ) |
| 64 | raleq | |- ( B = { ( 0g ` T ) } -> ( A. c e. B ( H ` ( a ( .r ` T ) c ) ) = ( ( H ` a ) ( .r ` S ) ( H ` c ) ) <-> A. c e. { ( 0g ` T ) } ( H ` ( a ( .r ` T ) c ) ) = ( ( H ` a ) ( .r ` S ) ( H ` c ) ) ) ) |
|
| 65 | 64 | raleqbi1dv | |- ( B = { ( 0g ` T ) } -> ( A. a e. B A. c e. B ( H ` ( a ( .r ` T ) c ) ) = ( ( H ` a ) ( .r ` S ) ( H ` c ) ) <-> A. a e. { ( 0g ` T ) } A. c e. { ( 0g ` T ) } ( H ` ( a ( .r ` T ) c ) ) = ( ( H ` a ) ( .r ` S ) ( H ` c ) ) ) ) |
| 66 | 65 | adantl | |- ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) -> ( A. a e. B A. c e. B ( H ` ( a ( .r ` T ) c ) ) = ( ( H ` a ) ( .r ` S ) ( H ` c ) ) <-> A. a e. { ( 0g ` T ) } A. c e. { ( 0g ` T ) } ( H ` ( a ( .r ` T ) c ) ) = ( ( H ` a ) ( .r ` S ) ( H ` c ) ) ) ) |
| 67 | 63 66 | mpbird | |- ( ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) /\ B = { ( 0g ` T ) } ) -> A. a e. B A. c e. B ( H ` ( a ( .r ` T ) c ) ) = ( ( H ` a ) ( .r ` S ) ( H ` c ) ) ) |
| 68 | 18 67 | mpdan | |- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> A. a e. B A. c e. B ( H ` ( a ( .r ` T ) c ) ) = ( ( H ` a ) ( .r ` S ) ( H ` c ) ) ) |
| 69 | 20 68 | jca | |- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> ( H e. ( T GrpHom S ) /\ A. a e. B A. c e. B ( H ` ( a ( .r ` T ) c ) ) = ( ( H ` a ) ( .r ` S ) ( H ` c ) ) ) ) |
| 70 | 1 40 32 | isrnghm | |- ( H e. ( T RngHom S ) <-> ( ( T e. Rng /\ S e. Rng ) /\ ( H e. ( T GrpHom S ) /\ A. a e. B A. c e. B ( H ` ( a ( .r ` T ) c ) ) = ( ( H ` a ) ( .r ` S ) ( H ` c ) ) ) ) ) |
| 71 | 8 69 70 | sylanbrc | |- ( ( S e. Rng /\ T e. ( Ring \ NzRing ) ) -> H e. ( T RngHom S ) ) |