This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is a non-unital ring homomorphism iff it is a group homomorphism and preserves multiplication. (Contributed by AV, 22-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isrnghm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| isrnghm.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| isrnghm.m | ⊢ ∗ = ( .r ‘ 𝑆 ) | ||
| Assertion | isrnghm | ⊢ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ↔ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∗ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrnghm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | isrnghm.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | isrnghm.m | ⊢ ∗ = ( .r ‘ 𝑆 ) | |
| 4 | rnghmrcl | ⊢ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) → ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 6 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 7 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 8 | 1 2 3 5 6 7 | rnghmval | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( 𝑅 RngHom 𝑆 ) = { 𝑓 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ∗ ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 9 | 8 | eleq2d | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ∗ ( 𝑓 ‘ 𝑦 ) ) ) } ) ) |
| 10 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) ) | |
| 11 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 12 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 13 | 11 12 | oveq12d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 14 | 10 13 | eqeq12d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 15 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) ) | |
| 16 | 11 12 | oveq12d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑥 ) ∗ ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∗ ( 𝐹 ‘ 𝑦 ) ) ) |
| 17 | 15 16 | eqeq12d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ∗ ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∗ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 18 | 14 17 | anbi12d | ⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ∗ ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∗ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 19 | 18 | 2ralbidv | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ∗ ( 𝑓 ‘ 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∗ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 20 | 19 | elrab | ⊢ ( 𝐹 ∈ { 𝑓 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ∗ ( 𝑓 ‘ 𝑦 ) ) ) } ↔ ( 𝐹 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∗ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 21 | r19.26-2 | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∗ ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∗ ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 22 | 21 | anbi2i | ⊢ ( ( 𝐹 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∗ ( 𝐹 ‘ 𝑦 ) ) ) ) ↔ ( 𝐹 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐵 ) ∧ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∗ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 23 | anass | ⊢ ( ( ( 𝐹 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∗ ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐹 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐵 ) ∧ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∗ ( 𝐹 ‘ 𝑦 ) ) ) ) ) | |
| 24 | 22 23 | bitr4i | ⊢ ( ( 𝐹 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∗ ( 𝐹 ‘ 𝑦 ) ) ) ) ↔ ( ( 𝐹 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∗ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 25 | 1 5 6 7 | isghm | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ↔ ( ( 𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ) ∧ ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 26 | fvex | ⊢ ( Base ‘ 𝑆 ) ∈ V | |
| 27 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 28 | 26 27 | pm3.2i | ⊢ ( ( Base ‘ 𝑆 ) ∈ V ∧ 𝐵 ∈ V ) |
| 29 | elmapg | ⊢ ( ( ( Base ‘ 𝑆 ) ∈ V ∧ 𝐵 ∈ V ) → ( 𝐹 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐵 ) ↔ 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) ) | |
| 30 | 28 29 | mp1i | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( 𝐹 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐵 ) ↔ 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) ) |
| 31 | 30 | anbi1d | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( ( 𝐹 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 32 | rngabl | ⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Abel ) | |
| 33 | ablgrp | ⊢ ( 𝑅 ∈ Abel → 𝑅 ∈ Grp ) | |
| 34 | 32 33 | syl | ⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) |
| 35 | rngabl | ⊢ ( 𝑆 ∈ Rng → 𝑆 ∈ Abel ) | |
| 36 | ablgrp | ⊢ ( 𝑆 ∈ Abel → 𝑆 ∈ Grp ) | |
| 37 | 35 36 | syl | ⊢ ( 𝑆 ∈ Rng → 𝑆 ∈ Grp ) |
| 38 | ibar | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ) → ( ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( ( 𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ) ∧ ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) | |
| 39 | 34 37 38 | syl2an | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( ( 𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ) ∧ ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) |
| 40 | 31 39 | bitr2d | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( ( ( 𝑅 ∈ Grp ∧ 𝑆 ∈ Grp ) ∧ ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ↔ ( 𝐹 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 41 | 25 40 | bitr2id | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( ( 𝐹 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ↔ 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) ) |
| 42 | 41 | anbi1d | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( ( ( 𝐹 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∗ ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∗ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 43 | 24 42 | bitrid | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( ( 𝐹 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∗ ( 𝐹 ‘ 𝑦 ) ) ) ) ↔ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∗ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 44 | 20 43 | bitrid | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( 𝐹 ∈ { 𝑓 ∈ ( ( Base ‘ 𝑆 ) ↑m 𝐵 ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ∗ ( 𝑓 ‘ 𝑦 ) ) ) } ↔ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∗ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 45 | 9 44 | bitrd | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) → ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∗ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 46 | 4 45 | biadanii | ⊢ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ↔ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ∗ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |