This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ideal contains negatives. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lidlcl.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| lidlnegcl.n | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | ||
| Assertion | lidlnegcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐼 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlcl.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| 2 | lidlnegcl.n | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | |
| 3 | rlmvneg | ⊢ ( invg ‘ 𝑅 ) = ( invg ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 4 | 2 3 | eqtri | ⊢ 𝑁 = ( invg ‘ ( ringLMod ‘ 𝑅 ) ) |
| 5 | 4 | fveq1i | ⊢ ( 𝑁 ‘ 𝑋 ) = ( ( invg ‘ ( ringLMod ‘ 𝑅 ) ) ‘ 𝑋 ) |
| 6 | rlmlmod | ⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) | |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼 ) → ( ringLMod ‘ 𝑅 ) ∈ LMod ) |
| 8 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ∈ 𝑈 ) | |
| 9 | lidlval | ⊢ ( LIdeal ‘ 𝑅 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 10 | 1 9 | eqtri | ⊢ 𝑈 = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
| 11 | 8 10 | eleqtrdi | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ∈ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 12 | 11 | 3adant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼 ) → 𝐼 ∈ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 13 | simp3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼 ) → 𝑋 ∈ 𝐼 ) | |
| 14 | eqid | ⊢ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 15 | eqid | ⊢ ( invg ‘ ( ringLMod ‘ 𝑅 ) ) = ( invg ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 16 | 14 15 | lssvnegcl | ⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ 𝐼 ∈ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) ∧ 𝑋 ∈ 𝐼 ) → ( ( invg ‘ ( ringLMod ‘ 𝑅 ) ) ‘ 𝑋 ) ∈ 𝐼 ) |
| 17 | 7 12 13 16 | syl3anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼 ) → ( ( invg ‘ ( ringLMod ‘ 𝑅 ) ) ‘ 𝑋 ) ∈ 𝐼 ) |
| 18 | 5 17 | eqeltrid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐼 ) |