This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero ideal contains a nonzero element. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lidlnz.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| lidlnz.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | lidlnz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ∃ 𝑥 ∈ 𝐼 𝑥 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlnz.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| 2 | lidlnz.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | 1 2 | lidl0cl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 0 ∈ 𝐼 ) |
| 4 | 3 | snssd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → { 0 } ⊆ 𝐼 ) |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → { 0 } ⊆ 𝐼 ) |
| 6 | simp3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → 𝐼 ≠ { 0 } ) | |
| 7 | 6 | necomd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → { 0 } ≠ 𝐼 ) |
| 8 | df-pss | ⊢ ( { 0 } ⊊ 𝐼 ↔ ( { 0 } ⊆ 𝐼 ∧ { 0 } ≠ 𝐼 ) ) | |
| 9 | 5 7 8 | sylanbrc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → { 0 } ⊊ 𝐼 ) |
| 10 | pssnel | ⊢ ( { 0 } ⊊ 𝐼 → ∃ 𝑥 ( 𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ { 0 } ) ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ∃ 𝑥 ( 𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ { 0 } ) ) |
| 12 | velsn | ⊢ ( 𝑥 ∈ { 0 } ↔ 𝑥 = 0 ) | |
| 13 | 12 | necon3bbii | ⊢ ( ¬ 𝑥 ∈ { 0 } ↔ 𝑥 ≠ 0 ) |
| 14 | 13 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ { 0 } ) ↔ ( 𝑥 ∈ 𝐼 ∧ 𝑥 ≠ 0 ) ) |
| 15 | 14 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ { 0 } ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐼 ∧ 𝑥 ≠ 0 ) ) |
| 16 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐼 𝑥 ≠ 0 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐼 ∧ 𝑥 ≠ 0 ) ) | |
| 17 | 15 16 | bitr4i | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ { 0 } ) ↔ ∃ 𝑥 ∈ 𝐼 𝑥 ≠ 0 ) |
| 18 | 11 17 | sylib | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 } ) → ∃ 𝑥 ∈ 𝐼 𝑥 ≠ 0 ) |