This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for zringlpir . A nonzero ideal of integers contains some positive integers. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by AV, 9-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zringlpirlem.i | |- ( ph -> I e. ( LIdeal ` ZZring ) ) |
|
| zringlpirlem.n0 | |- ( ph -> I =/= { 0 } ) |
||
| Assertion | zringlpirlem1 | |- ( ph -> ( I i^i NN ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringlpirlem.i | |- ( ph -> I e. ( LIdeal ` ZZring ) ) |
|
| 2 | zringlpirlem.n0 | |- ( ph -> I =/= { 0 } ) |
|
| 3 | simplr | |- ( ( ( ph /\ a e. I ) /\ a =/= 0 ) -> a e. I ) |
|
| 4 | eleq1 | |- ( ( abs ` a ) = a -> ( ( abs ` a ) e. I <-> a e. I ) ) |
|
| 5 | 3 4 | syl5ibrcom | |- ( ( ( ph /\ a e. I ) /\ a =/= 0 ) -> ( ( abs ` a ) = a -> ( abs ` a ) e. I ) ) |
| 6 | zsubrg | |- ZZ e. ( SubRing ` CCfld ) |
|
| 7 | subrgsubg | |- ( ZZ e. ( SubRing ` CCfld ) -> ZZ e. ( SubGrp ` CCfld ) ) |
|
| 8 | 6 7 | ax-mp | |- ZZ e. ( SubGrp ` CCfld ) |
| 9 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
| 10 | eqid | |- ( LIdeal ` ZZring ) = ( LIdeal ` ZZring ) |
|
| 11 | 9 10 | lidlss | |- ( I e. ( LIdeal ` ZZring ) -> I C_ ZZ ) |
| 12 | 1 11 | syl | |- ( ph -> I C_ ZZ ) |
| 13 | 12 | sselda | |- ( ( ph /\ a e. I ) -> a e. ZZ ) |
| 14 | df-zring | |- ZZring = ( CCfld |`s ZZ ) |
|
| 15 | eqid | |- ( invg ` CCfld ) = ( invg ` CCfld ) |
|
| 16 | eqid | |- ( invg ` ZZring ) = ( invg ` ZZring ) |
|
| 17 | 14 15 16 | subginv | |- ( ( ZZ e. ( SubGrp ` CCfld ) /\ a e. ZZ ) -> ( ( invg ` CCfld ) ` a ) = ( ( invg ` ZZring ) ` a ) ) |
| 18 | 8 13 17 | sylancr | |- ( ( ph /\ a e. I ) -> ( ( invg ` CCfld ) ` a ) = ( ( invg ` ZZring ) ` a ) ) |
| 19 | 13 | zcnd | |- ( ( ph /\ a e. I ) -> a e. CC ) |
| 20 | cnfldneg | |- ( a e. CC -> ( ( invg ` CCfld ) ` a ) = -u a ) |
|
| 21 | 19 20 | syl | |- ( ( ph /\ a e. I ) -> ( ( invg ` CCfld ) ` a ) = -u a ) |
| 22 | 18 21 | eqtr3d | |- ( ( ph /\ a e. I ) -> ( ( invg ` ZZring ) ` a ) = -u a ) |
| 23 | zringring | |- ZZring e. Ring |
|
| 24 | 1 | adantr | |- ( ( ph /\ a e. I ) -> I e. ( LIdeal ` ZZring ) ) |
| 25 | simpr | |- ( ( ph /\ a e. I ) -> a e. I ) |
|
| 26 | 10 16 | lidlnegcl | |- ( ( ZZring e. Ring /\ I e. ( LIdeal ` ZZring ) /\ a e. I ) -> ( ( invg ` ZZring ) ` a ) e. I ) |
| 27 | 23 24 25 26 | mp3an2i | |- ( ( ph /\ a e. I ) -> ( ( invg ` ZZring ) ` a ) e. I ) |
| 28 | 22 27 | eqeltrrd | |- ( ( ph /\ a e. I ) -> -u a e. I ) |
| 29 | 28 | adantr | |- ( ( ( ph /\ a e. I ) /\ a =/= 0 ) -> -u a e. I ) |
| 30 | eleq1 | |- ( ( abs ` a ) = -u a -> ( ( abs ` a ) e. I <-> -u a e. I ) ) |
|
| 31 | 29 30 | syl5ibrcom | |- ( ( ( ph /\ a e. I ) /\ a =/= 0 ) -> ( ( abs ` a ) = -u a -> ( abs ` a ) e. I ) ) |
| 32 | 13 | zred | |- ( ( ph /\ a e. I ) -> a e. RR ) |
| 33 | 32 | absord | |- ( ( ph /\ a e. I ) -> ( ( abs ` a ) = a \/ ( abs ` a ) = -u a ) ) |
| 34 | 33 | adantr | |- ( ( ( ph /\ a e. I ) /\ a =/= 0 ) -> ( ( abs ` a ) = a \/ ( abs ` a ) = -u a ) ) |
| 35 | 5 31 34 | mpjaod | |- ( ( ( ph /\ a e. I ) /\ a =/= 0 ) -> ( abs ` a ) e. I ) |
| 36 | nnabscl | |- ( ( a e. ZZ /\ a =/= 0 ) -> ( abs ` a ) e. NN ) |
|
| 37 | 13 36 | sylan | |- ( ( ( ph /\ a e. I ) /\ a =/= 0 ) -> ( abs ` a ) e. NN ) |
| 38 | 35 37 | elind | |- ( ( ( ph /\ a e. I ) /\ a =/= 0 ) -> ( abs ` a ) e. ( I i^i NN ) ) |
| 39 | 38 | ne0d | |- ( ( ( ph /\ a e. I ) /\ a =/= 0 ) -> ( I i^i NN ) =/= (/) ) |
| 40 | zring0 | |- 0 = ( 0g ` ZZring ) |
|
| 41 | 10 40 | lidlnz | |- ( ( ZZring e. Ring /\ I e. ( LIdeal ` ZZring ) /\ I =/= { 0 } ) -> E. a e. I a =/= 0 ) |
| 42 | 23 1 2 41 | mp3an2i | |- ( ph -> E. a e. I a =/= 0 ) |
| 43 | 39 42 | r19.29a | |- ( ph -> ( I i^i NN ) =/= (/) ) |