This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ZZ -module operation turns an arbitrary abelian group into a left module over ZZ . Also see zlmassa . (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zlmlmod.w | ⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) | |
| Assertion | zlmlmod | ⊢ ( 𝐺 ∈ Abel ↔ 𝑊 ∈ LMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmlmod.w | ⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 3 | 1 2 | zlmbas | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝑊 ) |
| 4 | 3 | a1i | ⊢ ( 𝐺 ∈ Abel → ( Base ‘ 𝐺 ) = ( Base ‘ 𝑊 ) ) |
| 5 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 6 | 1 5 | zlmplusg | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝑊 ) |
| 7 | 6 | a1i | ⊢ ( 𝐺 ∈ Abel → ( +g ‘ 𝐺 ) = ( +g ‘ 𝑊 ) ) |
| 8 | 1 | zlmsca | ⊢ ( 𝐺 ∈ Abel → ℤring = ( Scalar ‘ 𝑊 ) ) |
| 9 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 10 | 1 9 | zlmvsca | ⊢ ( .g ‘ 𝐺 ) = ( ·𝑠 ‘ 𝑊 ) |
| 11 | 10 | a1i | ⊢ ( 𝐺 ∈ Abel → ( .g ‘ 𝐺 ) = ( ·𝑠 ‘ 𝑊 ) ) |
| 12 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 13 | 12 | a1i | ⊢ ( 𝐺 ∈ Abel → ℤ = ( Base ‘ ℤring ) ) |
| 14 | zringplusg | ⊢ + = ( +g ‘ ℤring ) | |
| 15 | 14 | a1i | ⊢ ( 𝐺 ∈ Abel → + = ( +g ‘ ℤring ) ) |
| 16 | zringmulr | ⊢ · = ( .r ‘ ℤring ) | |
| 17 | 16 | a1i | ⊢ ( 𝐺 ∈ Abel → · = ( .r ‘ ℤring ) ) |
| 18 | zring1 | ⊢ 1 = ( 1r ‘ ℤring ) | |
| 19 | 18 | a1i | ⊢ ( 𝐺 ∈ Abel → 1 = ( 1r ‘ ℤring ) ) |
| 20 | zringring | ⊢ ℤring ∈ Ring | |
| 21 | 20 | a1i | ⊢ ( 𝐺 ∈ Abel → ℤring ∈ Ring ) |
| 22 | 3 6 | ablprop | ⊢ ( 𝐺 ∈ Abel ↔ 𝑊 ∈ Abel ) |
| 23 | ablgrp | ⊢ ( 𝑊 ∈ Abel → 𝑊 ∈ Grp ) | |
| 24 | 22 23 | sylbi | ⊢ ( 𝐺 ∈ Abel → 𝑊 ∈ Grp ) |
| 25 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 26 | 2 9 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( .g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 27 | 25 26 | syl3an1 | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( .g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 28 | 2 9 5 | mulgdi | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( .g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( 𝑥 ( .g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑥 ( .g ‘ 𝐺 ) 𝑧 ) ) ) |
| 29 | 2 9 5 | mulgdir | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 + 𝑦 ) ( .g ‘ 𝐺 ) 𝑧 ) = ( ( 𝑥 ( .g ‘ 𝐺 ) 𝑧 ) ( +g ‘ 𝐺 ) ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 ) ) ) |
| 30 | 25 29 | sylan | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 + 𝑦 ) ( .g ‘ 𝐺 ) 𝑧 ) = ( ( 𝑥 ( .g ‘ 𝐺 ) 𝑧 ) ( +g ‘ 𝐺 ) ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 ) ) ) |
| 31 | 2 9 | mulgass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 · 𝑦 ) ( .g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( .g ‘ 𝐺 ) ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 ) ) ) |
| 32 | 25 31 | sylan | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 · 𝑦 ) ( .g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( .g ‘ 𝐺 ) ( 𝑦 ( .g ‘ 𝐺 ) 𝑧 ) ) ) |
| 33 | 2 9 | mulg1 | ⊢ ( 𝑥 ∈ ( Base ‘ 𝐺 ) → ( 1 ( .g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
| 34 | 33 | adantl | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 1 ( .g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
| 35 | 4 7 8 11 13 15 17 19 21 24 27 28 30 32 34 | islmodd | ⊢ ( 𝐺 ∈ Abel → 𝑊 ∈ LMod ) |
| 36 | lmodabl | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) | |
| 37 | 36 22 | sylibr | ⊢ ( 𝑊 ∈ LMod → 𝐺 ∈ Abel ) |
| 38 | 35 37 | impbii | ⊢ ( 𝐺 ∈ Abel ↔ 𝑊 ∈ LMod ) |