This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ZZ -module operation turns a ring into an associative algebra over ZZ . Also see zlmlmod . (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zlmassa.w | ⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) | |
| Assertion | zlmassa | ⊢ ( 𝐺 ∈ Ring ↔ 𝑊 ∈ AssAlg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmassa.w | ⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 3 | 1 2 | zlmbas | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝑊 ) |
| 4 | 3 | a1i | ⊢ ( 𝐺 ∈ Ring → ( Base ‘ 𝐺 ) = ( Base ‘ 𝑊 ) ) |
| 5 | 1 | zlmsca | ⊢ ( 𝐺 ∈ Ring → ℤring = ( Scalar ‘ 𝑊 ) ) |
| 6 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 7 | 6 | a1i | ⊢ ( 𝐺 ∈ Ring → ℤ = ( Base ‘ ℤring ) ) |
| 8 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 9 | 1 8 | zlmvsca | ⊢ ( .g ‘ 𝐺 ) = ( ·𝑠 ‘ 𝑊 ) |
| 10 | 9 | a1i | ⊢ ( 𝐺 ∈ Ring → ( .g ‘ 𝐺 ) = ( ·𝑠 ‘ 𝑊 ) ) |
| 11 | eqid | ⊢ ( .r ‘ 𝐺 ) = ( .r ‘ 𝐺 ) | |
| 12 | 1 11 | zlmmulr | ⊢ ( .r ‘ 𝐺 ) = ( .r ‘ 𝑊 ) |
| 13 | 12 | a1i | ⊢ ( 𝐺 ∈ Ring → ( .r ‘ 𝐺 ) = ( .r ‘ 𝑊 ) ) |
| 14 | ringabl | ⊢ ( 𝐺 ∈ Ring → 𝐺 ∈ Abel ) | |
| 15 | 1 | zlmlmod | ⊢ ( 𝐺 ∈ Abel ↔ 𝑊 ∈ LMod ) |
| 16 | 14 15 | sylib | ⊢ ( 𝐺 ∈ Ring → 𝑊 ∈ LMod ) |
| 17 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 18 | 1 17 | zlmplusg | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝑊 ) |
| 19 | 3 18 12 | ringprop | ⊢ ( 𝐺 ∈ Ring ↔ 𝑊 ∈ Ring ) |
| 20 | 19 | biimpi | ⊢ ( 𝐺 ∈ Ring → 𝑊 ∈ Ring ) |
| 21 | 2 8 11 | mulgass2 | ⊢ ( ( 𝐺 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( .g ‘ 𝐺 ) 𝑦 ) ( .r ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( .g ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑧 ) ) ) |
| 22 | 2 8 11 | mulgass3 | ⊢ ( ( 𝐺 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑦 ( .r ‘ 𝐺 ) ( 𝑥 ( .g ‘ 𝐺 ) 𝑧 ) ) = ( 𝑥 ( .g ‘ 𝐺 ) ( 𝑦 ( .r ‘ 𝐺 ) 𝑧 ) ) ) |
| 23 | 4 5 7 10 13 16 20 21 22 | isassad | ⊢ ( 𝐺 ∈ Ring → 𝑊 ∈ AssAlg ) |
| 24 | assaring | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) | |
| 25 | 24 19 | sylibr | ⊢ ( 𝑊 ∈ AssAlg → 𝐺 ∈ Ring ) |
| 26 | 23 25 | impbii | ⊢ ( 𝐺 ∈ Ring ↔ 𝑊 ∈ AssAlg ) |