This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar ring of a ZZ -module. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 12-Jun-2019) (Proof shortened by AV, 2-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zlmbas.w | ⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) | |
| Assertion | zlmsca | ⊢ ( 𝐺 ∈ 𝑉 → ℤring = ( Scalar ‘ 𝑊 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmbas.w | ⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) | |
| 2 | scaid | ⊢ Scalar = Slot ( Scalar ‘ ndx ) | |
| 3 | vscandxnscandx | ⊢ ( ·𝑠 ‘ ndx ) ≠ ( Scalar ‘ ndx ) | |
| 4 | 3 | necomi | ⊢ ( Scalar ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
| 5 | 2 4 | setsnid | ⊢ ( Scalar ‘ ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) ) = ( Scalar ‘ ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝐺 ) 〉 ) ) |
| 6 | zringring | ⊢ ℤring ∈ Ring | |
| 7 | 2 | setsid | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ ℤring ∈ Ring ) → ℤring = ( Scalar ‘ ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) ) ) |
| 8 | 6 7 | mpan2 | ⊢ ( 𝐺 ∈ 𝑉 → ℤring = ( Scalar ‘ ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) ) ) |
| 9 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 10 | 1 9 | zlmval | ⊢ ( 𝐺 ∈ 𝑉 → 𝑊 = ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝐺 ) 〉 ) ) |
| 11 | 10 | fveq2d | ⊢ ( 𝐺 ∈ 𝑉 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝐺 ) 〉 ) ) ) |
| 12 | 5 8 11 | 3eqtr4a | ⊢ ( 𝐺 ∈ 𝑉 → ℤring = ( Scalar ‘ 𝑊 ) ) |