This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication operation of a ZZ -module. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zlmbas.w | ⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) | |
| zlmvsca.2 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| Assertion | zlmvsca | ⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmbas.w | ⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) | |
| 2 | zlmvsca.2 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | ovex | ⊢ ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) ∈ V | |
| 4 | 2 | fvexi | ⊢ · ∈ V |
| 5 | vscaid | ⊢ ·𝑠 = Slot ( ·𝑠 ‘ ndx ) | |
| 6 | 5 | setsid | ⊢ ( ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) ∈ V ∧ · ∈ V ) → · = ( ·𝑠 ‘ ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , · 〉 ) ) ) |
| 7 | 3 4 6 | mp2an | ⊢ · = ( ·𝑠 ‘ ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , · 〉 ) ) |
| 8 | 1 2 | zlmval | ⊢ ( 𝐺 ∈ V → 𝑊 = ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , · 〉 ) ) |
| 9 | 8 | fveq2d | ⊢ ( 𝐺 ∈ V → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , · 〉 ) ) ) |
| 10 | 7 9 | eqtr4id | ⊢ ( 𝐺 ∈ V → · = ( ·𝑠 ‘ 𝑊 ) ) |
| 11 | 5 | str0 | ⊢ ∅ = ( ·𝑠 ‘ ∅ ) |
| 12 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( .g ‘ 𝐺 ) = ∅ ) | |
| 13 | 2 12 | eqtrid | ⊢ ( ¬ 𝐺 ∈ V → · = ∅ ) |
| 14 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( ℤMod ‘ 𝐺 ) = ∅ ) | |
| 15 | 1 14 | eqtrid | ⊢ ( ¬ 𝐺 ∈ V → 𝑊 = ∅ ) |
| 16 | 15 | fveq2d | ⊢ ( ¬ 𝐺 ∈ V → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ ∅ ) ) |
| 17 | 11 13 16 | 3eqtr4a | ⊢ ( ¬ 𝐺 ∈ V → · = ( ·𝑠 ‘ 𝑊 ) ) |
| 18 | 10 17 | pm2.61i | ⊢ · = ( ·𝑠 ‘ 𝑊 ) |