This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ZZ -module operation turns an arbitrary abelian group into a left module over ZZ . Also see zlmassa . (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zlmlmod.w | |- W = ( ZMod ` G ) |
|
| Assertion | zlmlmod | |- ( G e. Abel <-> W e. LMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmlmod.w | |- W = ( ZMod ` G ) |
|
| 2 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 3 | 1 2 | zlmbas | |- ( Base ` G ) = ( Base ` W ) |
| 4 | 3 | a1i | |- ( G e. Abel -> ( Base ` G ) = ( Base ` W ) ) |
| 5 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 6 | 1 5 | zlmplusg | |- ( +g ` G ) = ( +g ` W ) |
| 7 | 6 | a1i | |- ( G e. Abel -> ( +g ` G ) = ( +g ` W ) ) |
| 8 | 1 | zlmsca | |- ( G e. Abel -> ZZring = ( Scalar ` W ) ) |
| 9 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 10 | 1 9 | zlmvsca | |- ( .g ` G ) = ( .s ` W ) |
| 11 | 10 | a1i | |- ( G e. Abel -> ( .g ` G ) = ( .s ` W ) ) |
| 12 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
| 13 | 12 | a1i | |- ( G e. Abel -> ZZ = ( Base ` ZZring ) ) |
| 14 | zringplusg | |- + = ( +g ` ZZring ) |
|
| 15 | 14 | a1i | |- ( G e. Abel -> + = ( +g ` ZZring ) ) |
| 16 | zringmulr | |- x. = ( .r ` ZZring ) |
|
| 17 | 16 | a1i | |- ( G e. Abel -> x. = ( .r ` ZZring ) ) |
| 18 | zring1 | |- 1 = ( 1r ` ZZring ) |
|
| 19 | 18 | a1i | |- ( G e. Abel -> 1 = ( 1r ` ZZring ) ) |
| 20 | zringring | |- ZZring e. Ring |
|
| 21 | 20 | a1i | |- ( G e. Abel -> ZZring e. Ring ) |
| 22 | 3 6 | ablprop | |- ( G e. Abel <-> W e. Abel ) |
| 23 | ablgrp | |- ( W e. Abel -> W e. Grp ) |
|
| 24 | 22 23 | sylbi | |- ( G e. Abel -> W e. Grp ) |
| 25 | ablgrp | |- ( G e. Abel -> G e. Grp ) |
|
| 26 | 2 9 | mulgcl | |- ( ( G e. Grp /\ x e. ZZ /\ y e. ( Base ` G ) ) -> ( x ( .g ` G ) y ) e. ( Base ` G ) ) |
| 27 | 25 26 | syl3an1 | |- ( ( G e. Abel /\ x e. ZZ /\ y e. ( Base ` G ) ) -> ( x ( .g ` G ) y ) e. ( Base ` G ) ) |
| 28 | 2 9 5 | mulgdi | |- ( ( G e. Abel /\ ( x e. ZZ /\ y e. ( Base ` G ) /\ z e. ( Base ` G ) ) ) -> ( x ( .g ` G ) ( y ( +g ` G ) z ) ) = ( ( x ( .g ` G ) y ) ( +g ` G ) ( x ( .g ` G ) z ) ) ) |
| 29 | 2 9 5 | mulgdir | |- ( ( G e. Grp /\ ( x e. ZZ /\ y e. ZZ /\ z e. ( Base ` G ) ) ) -> ( ( x + y ) ( .g ` G ) z ) = ( ( x ( .g ` G ) z ) ( +g ` G ) ( y ( .g ` G ) z ) ) ) |
| 30 | 25 29 | sylan | |- ( ( G e. Abel /\ ( x e. ZZ /\ y e. ZZ /\ z e. ( Base ` G ) ) ) -> ( ( x + y ) ( .g ` G ) z ) = ( ( x ( .g ` G ) z ) ( +g ` G ) ( y ( .g ` G ) z ) ) ) |
| 31 | 2 9 | mulgass | |- ( ( G e. Grp /\ ( x e. ZZ /\ y e. ZZ /\ z e. ( Base ` G ) ) ) -> ( ( x x. y ) ( .g ` G ) z ) = ( x ( .g ` G ) ( y ( .g ` G ) z ) ) ) |
| 32 | 25 31 | sylan | |- ( ( G e. Abel /\ ( x e. ZZ /\ y e. ZZ /\ z e. ( Base ` G ) ) ) -> ( ( x x. y ) ( .g ` G ) z ) = ( x ( .g ` G ) ( y ( .g ` G ) z ) ) ) |
| 33 | 2 9 | mulg1 | |- ( x e. ( Base ` G ) -> ( 1 ( .g ` G ) x ) = x ) |
| 34 | 33 | adantl | |- ( ( G e. Abel /\ x e. ( Base ` G ) ) -> ( 1 ( .g ` G ) x ) = x ) |
| 35 | 4 7 8 11 13 15 17 19 21 24 27 28 30 32 34 | islmodd | |- ( G e. Abel -> W e. LMod ) |
| 36 | lmodabl | |- ( W e. LMod -> W e. Abel ) |
|
| 37 | 36 22 | sylibr | |- ( W e. LMod -> G e. Abel ) |
| 38 | 35 37 | impbii | |- ( G e. Abel <-> W e. LMod ) |