This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite sum in the nonnegative extended reals is monotonic in the support. (Contributed by Mario Carneiro, 13-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xrge0gsumle.g | ⊢ 𝐺 = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) | |
| xrge0gsumle.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| xrge0gsumle.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) ) | ||
| xrge0gsumle.b | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝒫 𝐴 ∩ Fin ) ) | ||
| xrge0gsumle.c | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐵 ) | ||
| Assertion | xrge0gsumle | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) ≤ ( 𝐺 Σg ( 𝐹 ↾ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrge0gsumle.g | ⊢ 𝐺 = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) | |
| 2 | xrge0gsumle.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | xrge0gsumle.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) ) | |
| 4 | xrge0gsumle.b | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝒫 𝐴 ∩ Fin ) ) | |
| 5 | xrge0gsumle.c | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐵 ) | |
| 6 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
| 7 | xrsbas | ⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) | |
| 8 | 1 7 | ressbas2 | ⊢ ( ( 0 [,] +∞ ) ⊆ ℝ* → ( 0 [,] +∞ ) = ( Base ‘ 𝐺 ) ) |
| 9 | 6 8 | ax-mp | ⊢ ( 0 [,] +∞ ) = ( Base ‘ 𝐺 ) |
| 10 | eqid | ⊢ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) = ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) | |
| 11 | 10 | xrge0subm | ⊢ ( 0 [,] +∞ ) ∈ ( SubMnd ‘ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ) |
| 12 | xrex | ⊢ ℝ* ∈ V | |
| 13 | 12 | difexi | ⊢ ( ℝ* ∖ { -∞ } ) ∈ V |
| 14 | simpl | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥 ) → 𝑥 ∈ ℝ* ) | |
| 15 | ge0nemnf | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥 ) → 𝑥 ≠ -∞ ) | |
| 16 | 14 15 | jca | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥 ) → ( 𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞ ) ) |
| 17 | elxrge0 | ⊢ ( 𝑥 ∈ ( 0 [,] +∞ ) ↔ ( 𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥 ) ) | |
| 18 | eldifsn | ⊢ ( 𝑥 ∈ ( ℝ* ∖ { -∞ } ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞ ) ) | |
| 19 | 16 17 18 | 3imtr4i | ⊢ ( 𝑥 ∈ ( 0 [,] +∞ ) → 𝑥 ∈ ( ℝ* ∖ { -∞ } ) ) |
| 20 | 19 | ssriv | ⊢ ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) |
| 21 | ressabs | ⊢ ( ( ( ℝ* ∖ { -∞ } ) ∈ V ∧ ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) ) → ( ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) | |
| 22 | 13 20 21 | mp2an | ⊢ ( ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) |
| 23 | 1 22 | eqtr4i | ⊢ 𝐺 = ( ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ↾s ( 0 [,] +∞ ) ) |
| 24 | 10 | xrs10 | ⊢ 0 = ( 0g ‘ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ) |
| 25 | 23 24 | subm0 | ⊢ ( ( 0 [,] +∞ ) ∈ ( SubMnd ‘ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ) → 0 = ( 0g ‘ 𝐺 ) ) |
| 26 | 11 25 | ax-mp | ⊢ 0 = ( 0g ‘ 𝐺 ) |
| 27 | xrge0cmn | ⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd | |
| 28 | 1 27 | eqeltri | ⊢ 𝐺 ∈ CMnd |
| 29 | 28 | a1i | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐺 ∈ CMnd ) |
| 30 | elfpw | ⊢ ( 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝑠 ⊆ 𝐴 ∧ 𝑠 ∈ Fin ) ) | |
| 31 | 30 | simprbi | ⊢ ( 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑠 ∈ Fin ) |
| 32 | 31 | adantl | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑠 ∈ Fin ) |
| 33 | 30 | simplbi | ⊢ ( 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑠 ⊆ 𝐴 ) |
| 34 | fssres | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 0 [,] +∞ ) ∧ 𝑠 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝑠 ) : 𝑠 ⟶ ( 0 [,] +∞ ) ) | |
| 35 | 3 33 34 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 ↾ 𝑠 ) : 𝑠 ⟶ ( 0 [,] +∞ ) ) |
| 36 | c0ex | ⊢ 0 ∈ V | |
| 37 | 36 | a1i | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 0 ∈ V ) |
| 38 | 35 32 37 | fdmfifsupp | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 ↾ 𝑠 ) finSupp 0 ) |
| 39 | 9 26 29 32 35 38 | gsumcl | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑠 ) ) ∈ ( 0 [,] +∞ ) ) |
| 40 | 6 39 | sselid | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑠 ) ) ∈ ℝ* ) |
| 41 | 40 | fmpttd | ⊢ ( 𝜑 → ( 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑠 ) ) ) : ( 𝒫 𝐴 ∩ Fin ) ⟶ ℝ* ) |
| 42 | 41 | frnd | ⊢ ( 𝜑 → ran ( 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑠 ) ) ) ⊆ ℝ* ) |
| 43 | 0ss | ⊢ ∅ ⊆ 𝐴 | |
| 44 | 0fi | ⊢ ∅ ∈ Fin | |
| 45 | elfpw | ⊢ ( ∅ ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( ∅ ⊆ 𝐴 ∧ ∅ ∈ Fin ) ) | |
| 46 | 43 44 45 | mpbir2an | ⊢ ∅ ∈ ( 𝒫 𝐴 ∩ Fin ) |
| 47 | 0cn | ⊢ 0 ∈ ℂ | |
| 48 | eqid | ⊢ ( 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑠 ) ) ) = ( 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑠 ) ) ) | |
| 49 | reseq2 | ⊢ ( 𝑠 = ∅ → ( 𝐹 ↾ 𝑠 ) = ( 𝐹 ↾ ∅ ) ) | |
| 50 | res0 | ⊢ ( 𝐹 ↾ ∅ ) = ∅ | |
| 51 | 49 50 | eqtrdi | ⊢ ( 𝑠 = ∅ → ( 𝐹 ↾ 𝑠 ) = ∅ ) |
| 52 | 51 | oveq2d | ⊢ ( 𝑠 = ∅ → ( 𝐺 Σg ( 𝐹 ↾ 𝑠 ) ) = ( 𝐺 Σg ∅ ) ) |
| 53 | 26 | gsum0 | ⊢ ( 𝐺 Σg ∅ ) = 0 |
| 54 | 52 53 | eqtrdi | ⊢ ( 𝑠 = ∅ → ( 𝐺 Σg ( 𝐹 ↾ 𝑠 ) ) = 0 ) |
| 55 | 48 54 | elrnmpt1s | ⊢ ( ( ∅ ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 0 ∈ ℂ ) → 0 ∈ ran ( 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑠 ) ) ) ) |
| 56 | 46 47 55 | mp2an | ⊢ 0 ∈ ran ( 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑠 ) ) ) |
| 57 | 56 | a1i | ⊢ ( 𝜑 → 0 ∈ ran ( 𝑠 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑠 ) ) ) ) |
| 58 | 42 57 | sseldd | ⊢ ( 𝜑 → 0 ∈ ℝ* ) |
| 59 | 28 | a1i | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 60 | 4 | elin2d | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 61 | diffi | ⊢ ( 𝐵 ∈ Fin → ( 𝐵 ∖ 𝐶 ) ∈ Fin ) | |
| 62 | 60 61 | syl | ⊢ ( 𝜑 → ( 𝐵 ∖ 𝐶 ) ∈ Fin ) |
| 63 | elfpw | ⊢ ( 𝐵 ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ∈ Fin ) ) | |
| 64 | 63 | simplbi | ⊢ ( 𝐵 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝐵 ⊆ 𝐴 ) |
| 65 | 4 64 | syl | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
| 66 | 65 | ssdifssd | ⊢ ( 𝜑 → ( 𝐵 ∖ 𝐶 ) ⊆ 𝐴 ) |
| 67 | 3 66 | fssresd | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) : ( 𝐵 ∖ 𝐶 ) ⟶ ( 0 [,] +∞ ) ) |
| 68 | 36 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 69 | 67 62 68 | fdmfifsupp | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) finSupp 0 ) |
| 70 | 9 26 59 62 67 69 | gsumcl | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 71 | 6 70 | sselid | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ∈ ℝ* ) |
| 72 | 60 5 | ssfid | ⊢ ( 𝜑 → 𝐶 ∈ Fin ) |
| 73 | 5 65 | sstrd | ⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
| 74 | 3 73 | fssresd | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ ( 0 [,] +∞ ) ) |
| 75 | 74 72 68 | fdmfifsupp | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) finSupp 0 ) |
| 76 | 9 26 59 72 74 75 | gsumcl | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) ∈ ( 0 [,] +∞ ) ) |
| 77 | 6 76 | sselid | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) ∈ ℝ* ) |
| 78 | elxrge0 | ⊢ ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ∈ ℝ* ∧ 0 ≤ ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ) ) | |
| 79 | 78 | simprbi | ⊢ ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ) |
| 80 | 70 79 | syl | ⊢ ( 𝜑 → 0 ≤ ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ) |
| 81 | xleadd2a | ⊢ ( ( ( 0 ∈ ℝ* ∧ ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ∈ ℝ* ∧ ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) ∈ ℝ* ) ∧ 0 ≤ ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) +𝑒 0 ) ≤ ( ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) +𝑒 ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ) ) | |
| 82 | 58 71 77 80 81 | syl31anc | ⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) +𝑒 0 ) ≤ ( ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) +𝑒 ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ) ) |
| 83 | 77 | xaddridd | ⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) +𝑒 0 ) = ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) ) |
| 84 | ovex | ⊢ ( 0 [,] +∞ ) ∈ V | |
| 85 | xrsadd | ⊢ +𝑒 = ( +g ‘ ℝ*𝑠 ) | |
| 86 | 1 85 | ressplusg | ⊢ ( ( 0 [,] +∞ ) ∈ V → +𝑒 = ( +g ‘ 𝐺 ) ) |
| 87 | 84 86 | ax-mp | ⊢ +𝑒 = ( +g ‘ 𝐺 ) |
| 88 | 3 65 | fssresd | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ ( 0 [,] +∞ ) ) |
| 89 | 88 60 68 | fdmfifsupp | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) finSupp 0 ) |
| 90 | disjdif | ⊢ ( 𝐶 ∩ ( 𝐵 ∖ 𝐶 ) ) = ∅ | |
| 91 | 90 | a1i | ⊢ ( 𝜑 → ( 𝐶 ∩ ( 𝐵 ∖ 𝐶 ) ) = ∅ ) |
| 92 | undif2 | ⊢ ( 𝐶 ∪ ( 𝐵 ∖ 𝐶 ) ) = ( 𝐶 ∪ 𝐵 ) | |
| 93 | ssequn1 | ⊢ ( 𝐶 ⊆ 𝐵 ↔ ( 𝐶 ∪ 𝐵 ) = 𝐵 ) | |
| 94 | 5 93 | sylib | ⊢ ( 𝜑 → ( 𝐶 ∪ 𝐵 ) = 𝐵 ) |
| 95 | 92 94 | eqtr2id | ⊢ ( 𝜑 → 𝐵 = ( 𝐶 ∪ ( 𝐵 ∖ 𝐶 ) ) ) |
| 96 | 9 26 87 59 4 88 89 91 95 | gsumsplit | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝐵 ) ) = ( ( 𝐺 Σg ( ( 𝐹 ↾ 𝐵 ) ↾ 𝐶 ) ) +𝑒 ( 𝐺 Σg ( ( 𝐹 ↾ 𝐵 ) ↾ ( 𝐵 ∖ 𝐶 ) ) ) ) ) |
| 97 | 5 | resabs1d | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐵 ) ↾ 𝐶 ) = ( 𝐹 ↾ 𝐶 ) ) |
| 98 | 97 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝐵 ) ↾ 𝐶 ) ) = ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) ) |
| 99 | difss | ⊢ ( 𝐵 ∖ 𝐶 ) ⊆ 𝐵 | |
| 100 | resabs1 | ⊢ ( ( 𝐵 ∖ 𝐶 ) ⊆ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ↾ ( 𝐵 ∖ 𝐶 ) ) = ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) | |
| 101 | 99 100 | mp1i | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐵 ) ↾ ( 𝐵 ∖ 𝐶 ) ) = ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) |
| 102 | 101 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝐵 ) ↾ ( 𝐵 ∖ 𝐶 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ) |
| 103 | 98 102 | oveq12d | ⊢ ( 𝜑 → ( ( 𝐺 Σg ( ( 𝐹 ↾ 𝐵 ) ↾ 𝐶 ) ) +𝑒 ( 𝐺 Σg ( ( 𝐹 ↾ 𝐵 ) ↾ ( 𝐵 ∖ 𝐶 ) ) ) ) = ( ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) +𝑒 ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ) ) |
| 104 | 96 103 | eqtr2d | ⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) +𝑒 ( 𝐺 Σg ( 𝐹 ↾ ( 𝐵 ∖ 𝐶 ) ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ 𝐵 ) ) ) |
| 105 | 82 83 104 | 3brtr3d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) ≤ ( 𝐺 Σg ( 𝐹 ↾ 𝐵 ) ) ) |