This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The nonnegative extended real numbers are a monoid. (Contributed by Mario Carneiro, 30-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrge0cmn | ⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) = ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) | |
| 2 | 1 | xrs1cmn | ⊢ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ∈ CMnd |
| 3 | 1 | xrge0subm | ⊢ ( 0 [,] +∞ ) ∈ ( SubMnd ‘ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ) |
| 4 | xrex | ⊢ ℝ* ∈ V | |
| 5 | 4 | difexi | ⊢ ( ℝ* ∖ { -∞ } ) ∈ V |
| 6 | difss | ⊢ ( ℝ* ∖ { -∞ } ) ⊆ ℝ* | |
| 7 | xrsbas | ⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) | |
| 8 | 1 7 | ressbas2 | ⊢ ( ( ℝ* ∖ { -∞ } ) ⊆ ℝ* → ( ℝ* ∖ { -∞ } ) = ( Base ‘ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ) ) |
| 9 | 6 8 | ax-mp | ⊢ ( ℝ* ∖ { -∞ } ) = ( Base ‘ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ) |
| 10 | 9 | submss | ⊢ ( ( 0 [,] +∞ ) ∈ ( SubMnd ‘ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ) → ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) ) |
| 11 | 3 10 | ax-mp | ⊢ ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) |
| 12 | ressabs | ⊢ ( ( ( ℝ* ∖ { -∞ } ) ∈ V ∧ ( 0 [,] +∞ ) ⊆ ( ℝ* ∖ { -∞ } ) ) → ( ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) | |
| 13 | 5 11 12 | mp2an | ⊢ ( ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) |
| 14 | 13 | eqcomi | ⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) = ( ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ↾s ( 0 [,] +∞ ) ) |
| 15 | 14 | submmnd | ⊢ ( ( 0 [,] +∞ ) ∈ ( SubMnd ‘ ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ) → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ) |
| 16 | 3 15 | ax-mp | ⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd |
| 17 | 14 | subcmn | ⊢ ( ( ( ℝ*𝑠 ↾s ( ℝ* ∖ { -∞ } ) ) ∈ CMnd ∧ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ) → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd ) |
| 18 | 2 16 17 | mp2an | ⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd |