This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commuted form of xleadd1a . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xleadd2a | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐶 +𝑒 𝐴 ) ≤ ( 𝐶 +𝑒 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xleadd1a | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 +𝑒 𝐶 ) ≤ ( 𝐵 +𝑒 𝐶 ) ) | |
| 2 | xaddcom | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 +𝑒 𝐶 ) = ( 𝐶 +𝑒 𝐴 ) ) | |
| 3 | 2 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 +𝑒 𝐶 ) = ( 𝐶 +𝑒 𝐴 ) ) |
| 4 | 3 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 +𝑒 𝐶 ) = ( 𝐶 +𝑒 𝐴 ) ) |
| 5 | xaddcom | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 +𝑒 𝐶 ) = ( 𝐶 +𝑒 𝐵 ) ) | |
| 6 | 5 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 +𝑒 𝐶 ) = ( 𝐶 +𝑒 𝐵 ) ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐵 +𝑒 𝐶 ) = ( 𝐶 +𝑒 𝐵 ) ) |
| 8 | 1 4 7 | 3brtr3d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐶 +𝑒 𝐴 ) ≤ ( 𝐶 +𝑒 𝐵 ) ) |