This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite sum in the nonnegative extended reals is monotonic in the support. (Contributed by Mario Carneiro, 13-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xrge0gsumle.g | |- G = ( RR*s |`s ( 0 [,] +oo ) ) |
|
| xrge0gsumle.a | |- ( ph -> A e. V ) |
||
| xrge0gsumle.f | |- ( ph -> F : A --> ( 0 [,] +oo ) ) |
||
| xrge0gsumle.b | |- ( ph -> B e. ( ~P A i^i Fin ) ) |
||
| xrge0gsumle.c | |- ( ph -> C C_ B ) |
||
| Assertion | xrge0gsumle | |- ( ph -> ( G gsum ( F |` C ) ) <_ ( G gsum ( F |` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrge0gsumle.g | |- G = ( RR*s |`s ( 0 [,] +oo ) ) |
|
| 2 | xrge0gsumle.a | |- ( ph -> A e. V ) |
|
| 3 | xrge0gsumle.f | |- ( ph -> F : A --> ( 0 [,] +oo ) ) |
|
| 4 | xrge0gsumle.b | |- ( ph -> B e. ( ~P A i^i Fin ) ) |
|
| 5 | xrge0gsumle.c | |- ( ph -> C C_ B ) |
|
| 6 | iccssxr | |- ( 0 [,] +oo ) C_ RR* |
|
| 7 | xrsbas | |- RR* = ( Base ` RR*s ) |
|
| 8 | 1 7 | ressbas2 | |- ( ( 0 [,] +oo ) C_ RR* -> ( 0 [,] +oo ) = ( Base ` G ) ) |
| 9 | 6 8 | ax-mp | |- ( 0 [,] +oo ) = ( Base ` G ) |
| 10 | eqid | |- ( RR*s |`s ( RR* \ { -oo } ) ) = ( RR*s |`s ( RR* \ { -oo } ) ) |
|
| 11 | 10 | xrge0subm | |- ( 0 [,] +oo ) e. ( SubMnd ` ( RR*s |`s ( RR* \ { -oo } ) ) ) |
| 12 | xrex | |- RR* e. _V |
|
| 13 | 12 | difexi | |- ( RR* \ { -oo } ) e. _V |
| 14 | simpl | |- ( ( x e. RR* /\ 0 <_ x ) -> x e. RR* ) |
|
| 15 | ge0nemnf | |- ( ( x e. RR* /\ 0 <_ x ) -> x =/= -oo ) |
|
| 16 | 14 15 | jca | |- ( ( x e. RR* /\ 0 <_ x ) -> ( x e. RR* /\ x =/= -oo ) ) |
| 17 | elxrge0 | |- ( x e. ( 0 [,] +oo ) <-> ( x e. RR* /\ 0 <_ x ) ) |
|
| 18 | eldifsn | |- ( x e. ( RR* \ { -oo } ) <-> ( x e. RR* /\ x =/= -oo ) ) |
|
| 19 | 16 17 18 | 3imtr4i | |- ( x e. ( 0 [,] +oo ) -> x e. ( RR* \ { -oo } ) ) |
| 20 | 19 | ssriv | |- ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) |
| 21 | ressabs | |- ( ( ( RR* \ { -oo } ) e. _V /\ ( 0 [,] +oo ) C_ ( RR* \ { -oo } ) ) -> ( ( RR*s |`s ( RR* \ { -oo } ) ) |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) ) |
|
| 22 | 13 20 21 | mp2an | |- ( ( RR*s |`s ( RR* \ { -oo } ) ) |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) |
| 23 | 1 22 | eqtr4i | |- G = ( ( RR*s |`s ( RR* \ { -oo } ) ) |`s ( 0 [,] +oo ) ) |
| 24 | 10 | xrs10 | |- 0 = ( 0g ` ( RR*s |`s ( RR* \ { -oo } ) ) ) |
| 25 | 23 24 | subm0 | |- ( ( 0 [,] +oo ) e. ( SubMnd ` ( RR*s |`s ( RR* \ { -oo } ) ) ) -> 0 = ( 0g ` G ) ) |
| 26 | 11 25 | ax-mp | |- 0 = ( 0g ` G ) |
| 27 | xrge0cmn | |- ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd |
|
| 28 | 1 27 | eqeltri | |- G e. CMnd |
| 29 | 28 | a1i | |- ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> G e. CMnd ) |
| 30 | elfpw | |- ( s e. ( ~P A i^i Fin ) <-> ( s C_ A /\ s e. Fin ) ) |
|
| 31 | 30 | simprbi | |- ( s e. ( ~P A i^i Fin ) -> s e. Fin ) |
| 32 | 31 | adantl | |- ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> s e. Fin ) |
| 33 | 30 | simplbi | |- ( s e. ( ~P A i^i Fin ) -> s C_ A ) |
| 34 | fssres | |- ( ( F : A --> ( 0 [,] +oo ) /\ s C_ A ) -> ( F |` s ) : s --> ( 0 [,] +oo ) ) |
|
| 35 | 3 33 34 | syl2an | |- ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> ( F |` s ) : s --> ( 0 [,] +oo ) ) |
| 36 | c0ex | |- 0 e. _V |
|
| 37 | 36 | a1i | |- ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> 0 e. _V ) |
| 38 | 35 32 37 | fdmfifsupp | |- ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> ( F |` s ) finSupp 0 ) |
| 39 | 9 26 29 32 35 38 | gsumcl | |- ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> ( G gsum ( F |` s ) ) e. ( 0 [,] +oo ) ) |
| 40 | 6 39 | sselid | |- ( ( ph /\ s e. ( ~P A i^i Fin ) ) -> ( G gsum ( F |` s ) ) e. RR* ) |
| 41 | 40 | fmpttd | |- ( ph -> ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) : ( ~P A i^i Fin ) --> RR* ) |
| 42 | 41 | frnd | |- ( ph -> ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) C_ RR* ) |
| 43 | 0ss | |- (/) C_ A |
|
| 44 | 0fi | |- (/) e. Fin |
|
| 45 | elfpw | |- ( (/) e. ( ~P A i^i Fin ) <-> ( (/) C_ A /\ (/) e. Fin ) ) |
|
| 46 | 43 44 45 | mpbir2an | |- (/) e. ( ~P A i^i Fin ) |
| 47 | 0cn | |- 0 e. CC |
|
| 48 | eqid | |- ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) = ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) |
|
| 49 | reseq2 | |- ( s = (/) -> ( F |` s ) = ( F |` (/) ) ) |
|
| 50 | res0 | |- ( F |` (/) ) = (/) |
|
| 51 | 49 50 | eqtrdi | |- ( s = (/) -> ( F |` s ) = (/) ) |
| 52 | 51 | oveq2d | |- ( s = (/) -> ( G gsum ( F |` s ) ) = ( G gsum (/) ) ) |
| 53 | 26 | gsum0 | |- ( G gsum (/) ) = 0 |
| 54 | 52 53 | eqtrdi | |- ( s = (/) -> ( G gsum ( F |` s ) ) = 0 ) |
| 55 | 48 54 | elrnmpt1s | |- ( ( (/) e. ( ~P A i^i Fin ) /\ 0 e. CC ) -> 0 e. ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) ) |
| 56 | 46 47 55 | mp2an | |- 0 e. ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) |
| 57 | 56 | a1i | |- ( ph -> 0 e. ran ( s e. ( ~P A i^i Fin ) |-> ( G gsum ( F |` s ) ) ) ) |
| 58 | 42 57 | sseldd | |- ( ph -> 0 e. RR* ) |
| 59 | 28 | a1i | |- ( ph -> G e. CMnd ) |
| 60 | 4 | elin2d | |- ( ph -> B e. Fin ) |
| 61 | diffi | |- ( B e. Fin -> ( B \ C ) e. Fin ) |
|
| 62 | 60 61 | syl | |- ( ph -> ( B \ C ) e. Fin ) |
| 63 | elfpw | |- ( B e. ( ~P A i^i Fin ) <-> ( B C_ A /\ B e. Fin ) ) |
|
| 64 | 63 | simplbi | |- ( B e. ( ~P A i^i Fin ) -> B C_ A ) |
| 65 | 4 64 | syl | |- ( ph -> B C_ A ) |
| 66 | 65 | ssdifssd | |- ( ph -> ( B \ C ) C_ A ) |
| 67 | 3 66 | fssresd | |- ( ph -> ( F |` ( B \ C ) ) : ( B \ C ) --> ( 0 [,] +oo ) ) |
| 68 | 36 | a1i | |- ( ph -> 0 e. _V ) |
| 69 | 67 62 68 | fdmfifsupp | |- ( ph -> ( F |` ( B \ C ) ) finSupp 0 ) |
| 70 | 9 26 59 62 67 69 | gsumcl | |- ( ph -> ( G gsum ( F |` ( B \ C ) ) ) e. ( 0 [,] +oo ) ) |
| 71 | 6 70 | sselid | |- ( ph -> ( G gsum ( F |` ( B \ C ) ) ) e. RR* ) |
| 72 | 60 5 | ssfid | |- ( ph -> C e. Fin ) |
| 73 | 5 65 | sstrd | |- ( ph -> C C_ A ) |
| 74 | 3 73 | fssresd | |- ( ph -> ( F |` C ) : C --> ( 0 [,] +oo ) ) |
| 75 | 74 72 68 | fdmfifsupp | |- ( ph -> ( F |` C ) finSupp 0 ) |
| 76 | 9 26 59 72 74 75 | gsumcl | |- ( ph -> ( G gsum ( F |` C ) ) e. ( 0 [,] +oo ) ) |
| 77 | 6 76 | sselid | |- ( ph -> ( G gsum ( F |` C ) ) e. RR* ) |
| 78 | elxrge0 | |- ( ( G gsum ( F |` ( B \ C ) ) ) e. ( 0 [,] +oo ) <-> ( ( G gsum ( F |` ( B \ C ) ) ) e. RR* /\ 0 <_ ( G gsum ( F |` ( B \ C ) ) ) ) ) |
|
| 79 | 78 | simprbi | |- ( ( G gsum ( F |` ( B \ C ) ) ) e. ( 0 [,] +oo ) -> 0 <_ ( G gsum ( F |` ( B \ C ) ) ) ) |
| 80 | 70 79 | syl | |- ( ph -> 0 <_ ( G gsum ( F |` ( B \ C ) ) ) ) |
| 81 | xleadd2a | |- ( ( ( 0 e. RR* /\ ( G gsum ( F |` ( B \ C ) ) ) e. RR* /\ ( G gsum ( F |` C ) ) e. RR* ) /\ 0 <_ ( G gsum ( F |` ( B \ C ) ) ) ) -> ( ( G gsum ( F |` C ) ) +e 0 ) <_ ( ( G gsum ( F |` C ) ) +e ( G gsum ( F |` ( B \ C ) ) ) ) ) |
|
| 82 | 58 71 77 80 81 | syl31anc | |- ( ph -> ( ( G gsum ( F |` C ) ) +e 0 ) <_ ( ( G gsum ( F |` C ) ) +e ( G gsum ( F |` ( B \ C ) ) ) ) ) |
| 83 | 77 | xaddridd | |- ( ph -> ( ( G gsum ( F |` C ) ) +e 0 ) = ( G gsum ( F |` C ) ) ) |
| 84 | ovex | |- ( 0 [,] +oo ) e. _V |
|
| 85 | xrsadd | |- +e = ( +g ` RR*s ) |
|
| 86 | 1 85 | ressplusg | |- ( ( 0 [,] +oo ) e. _V -> +e = ( +g ` G ) ) |
| 87 | 84 86 | ax-mp | |- +e = ( +g ` G ) |
| 88 | 3 65 | fssresd | |- ( ph -> ( F |` B ) : B --> ( 0 [,] +oo ) ) |
| 89 | 88 60 68 | fdmfifsupp | |- ( ph -> ( F |` B ) finSupp 0 ) |
| 90 | disjdif | |- ( C i^i ( B \ C ) ) = (/) |
|
| 91 | 90 | a1i | |- ( ph -> ( C i^i ( B \ C ) ) = (/) ) |
| 92 | undif2 | |- ( C u. ( B \ C ) ) = ( C u. B ) |
|
| 93 | ssequn1 | |- ( C C_ B <-> ( C u. B ) = B ) |
|
| 94 | 5 93 | sylib | |- ( ph -> ( C u. B ) = B ) |
| 95 | 92 94 | eqtr2id | |- ( ph -> B = ( C u. ( B \ C ) ) ) |
| 96 | 9 26 87 59 4 88 89 91 95 | gsumsplit | |- ( ph -> ( G gsum ( F |` B ) ) = ( ( G gsum ( ( F |` B ) |` C ) ) +e ( G gsum ( ( F |` B ) |` ( B \ C ) ) ) ) ) |
| 97 | 5 | resabs1d | |- ( ph -> ( ( F |` B ) |` C ) = ( F |` C ) ) |
| 98 | 97 | oveq2d | |- ( ph -> ( G gsum ( ( F |` B ) |` C ) ) = ( G gsum ( F |` C ) ) ) |
| 99 | difss | |- ( B \ C ) C_ B |
|
| 100 | resabs1 | |- ( ( B \ C ) C_ B -> ( ( F |` B ) |` ( B \ C ) ) = ( F |` ( B \ C ) ) ) |
|
| 101 | 99 100 | mp1i | |- ( ph -> ( ( F |` B ) |` ( B \ C ) ) = ( F |` ( B \ C ) ) ) |
| 102 | 101 | oveq2d | |- ( ph -> ( G gsum ( ( F |` B ) |` ( B \ C ) ) ) = ( G gsum ( F |` ( B \ C ) ) ) ) |
| 103 | 98 102 | oveq12d | |- ( ph -> ( ( G gsum ( ( F |` B ) |` C ) ) +e ( G gsum ( ( F |` B ) |` ( B \ C ) ) ) ) = ( ( G gsum ( F |` C ) ) +e ( G gsum ( F |` ( B \ C ) ) ) ) ) |
| 104 | 96 103 | eqtr2d | |- ( ph -> ( ( G gsum ( F |` C ) ) +e ( G gsum ( F |` ( B \ C ) ) ) ) = ( G gsum ( F |` B ) ) ) |
| 105 | 82 83 104 | 3brtr3d | |- ( ph -> ( G gsum ( F |` C ) ) <_ ( G gsum ( F |` B ) ) ) |